
The Varnish Book

Frontend (From Client) Workthread

Backend (To Server) Workthread

Request

vcl_recv

Restart

vcl_hash

lookup

vcl_deliver

Done

vcl_synth

vcl_hit

vcl_pass

vcl_miss

vcl_backend_fetch

vcl_purge

hit miss purge

vcl_pipe

pipe

pass hit-for-pass waiting

busy

read beresp(headers)

vcl_backend_response vcl_backend_error

cacheable?

cache

yes

do not cache

hit-for-pass

Request received

cnt_recv:

vcl_recv{} req.*

hash purge pass pipe synth

ESI_REQ

RESTART

cnt_restart:

ok? max_restarts?

cnt_recv:

vcl_hash{} req.*

lookup

SYNTH

cnt_synth:

vcl_synth{}
req.*

resp.*

deliver restart

cnt_deliver:

Filter obj.->resp.

vcl_deliver{}
req.*

resp.*

restart deliver synth

V1D_Deliver

DONE

stream?
body

see backend graphBGFETCH FETCH

FETCH_DONE FETCH_FAIL

cnt_lookup:

vcl_hit{}
req.*

obj.*

deliver miss restart synth pass

parallel
if obj expired

cnt_miss:

vcl_miss{} req.*

fetch synth restart pass

cnt_pass:

vcl_pass{} req.*

fetch synth restart

cnt_lookup:

hash lookup

hit? miss? hit-for-pass? busy?

(waitinglist)

cnt_pipe:

filter req.*->bereq.*

vcl_pipe{}
req.*

bereq.*

pipe synth

send bereq,
copy bytes until close

SYNTH

cnt_purge:

vcl_purge{} req.*

synth restart

RETRY

vbf_stp_startfetch:

vcl_backend_fetch{} bereq.*

abandon fetch

BGFETCHFETCH

send bereq,
read beresp (headers)

vbf_stp_startfetch:

vcl_backend_response{}
bereq.*

beresp.*

retry

max? ok?
abandon

deliver

304? other?

vbf_stp_error:

vcl_backend_error{}
bereq.*

beresp.*

retry

max? ok?
deliver

RETRY

vbf_stp_condfetch:

copy obj attr

steal body

fetch_fail? ok?

vbf_stp_fetch:

setup VFPs

fetch

fetch_fail? error? ok?

FETCH_DONE

"backend synth"

FETCH_FAIL RETRY

error abandon

t_origin

time

TTL grace keep

stale object

cached object

If-Modified-Since

fresh object

Object Lifetime

Authors: Francisco Velázquez (Varnish Software), Kristian Lyngstøl, Tollef Fog Heen,
Jérôme Renard

Copyright: Varnish Software AS 2010-2015, Redpill Linpro AS 2008-2009
Versions: Documentation version 4.x-2-g757256c / Tested for Varnish plus-4.1.2r1

Date: 2016-07-28
License: The material is available under a CC-BY-NC-SA license. See

http://creativecommons.org/licenses/by-nc-sa/3.0/ for the full license. For
questions regarding what we mean by non-commercial, please contact
training@varnish-software.com.

Contact: For any questions regarding this training material, please contact
training@varnish-software.com.

Web: http://www.varnish-software.com/book/
Source: http://github.com/varnish/Varnish-Book/

http://www.varnish-software.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/
mailto:training@varnish-software.com
mailto:training@varnish-software.com
http://www.varnish-software.com/book/
http://github.com/varnish/Varnish-Book/

Contents
1 Introduction 19

1.1 What is Varnish? 20

1.1.1 Varnish is Flexible 21

1.2 Varnish Cache and Varnish Plus 22

1.3 Varnish Cache and Varnish Software Timeline 24

1.4 What Is New in Varnish 4? 26

2 Design Principles 28

2.1 How objects are stored 30

2.2 Object Lifetime 31

3 Getting Started 32

3.1 Varnish Distribution 33

3.2 Exercise: Install Varnish 34

3.3 Exercise: Configure Varnish 36

3.3.1 VCL Reload 38

3.3.2 Test Varnish Using Apache as Backend 41

3.4 The Management Interface varnishadm 42

3.5 More About Varnish Configuration 44

3.6 Command Line Configuration 46

3.7 Defining a Backend in VCL 48

3.8 Exercise: Use the administration interface to learn, review and set Varnish
parameters

49

3.9 Exercise: Fetch Data Through Varnish 50

4 Examining Varnish Server's Output 51

4.1 Log Data Tools 52

4.2 Log Layout 53

4.3 Transactions 54

4.3.1 Transaction Groups 56

4.3.2 Example of Transaction Grouping with varnishlog 57

4.4 Query Language 58

4.5 Exercise: Filter Varnish Log Records 60

4.6 varnishstat 61

4.6.1 Notable Counters 65

4.7 Exercise: Try varnishstat and varnishlog together 67

5 Tuning 68

5.1 Varnish Architecture 69

5.1.1 The Parent Process: The Manager 71

5.1.2 The Child Process: The Cacher 72

5.1.3 VCL Compilation 73

5.2 Storage Backends 74

5.3 The Varnish Shared memory Log (VSL) 76

5.4 Tunable Parameters 77

5.5 Varnish Tuner 79

5.5.1 Varnish Tuner Persistence 80

5.5.2 Install Varnish Tuner 81

5.6 Threading Model 82

5.7 Threading Parameters 83

5.7.1 Details of Threading Parameters 85

5.7.2 Time Overhead per Thread Creation 86

5.8 System Parameters 87

5.9 Timers 88

5.10 Exercise: Tune first_byte_timeout 90

5.11 Exercise: Configure Threading 91

6 HTTP 92

6.1 Protocol Basics 93

6.1.1 Resources and Representations 94

6.1.2 Requests and Responses 95

6.1.3 Request Example 96

6.1.4 Response Example 97

6.2 HTTP Characteristics 98

6.3 Cache-related Headers Fields 99

6.4 Constructing Responses from Caches 100

6.5 Cache Matching 101

6.5.1 Vary 102

6.5.2 ETag 103

6.5.3 Last-Modified 104

6.5.4 If-None-Match 105

6.5.5 If-Modified-Since 106

6.6 Allowance 108

6.6.1 Cache-Control 109

6.6.2 Pragma 111

6.7 Freshness 112

6.7.1 Age 113

6.7.1.1 Exercise: Use article.php to test Age 113

6.7.2 Expires 114

6.8 Availability of Header Fields 115

6.9 Exercise: Test Various Cache Headers Fields with a Real Browser 116

7 VCL Basics 117

7.1 Varnish Finite State Machine 118

7.2 Detailed Varnish Request Flow for the Client Worker Thread 121

7.3 The VCL Finite State Machine 123

7.4 VCL Syntax 124

7.5 Built-in vcl_recv 125

7.6 VCL Built-in Functions and Keywords 127

7.7 Legal Return Actions 128

7.8 Variables in VCL subroutines 129

7.9 Detailed Varnish Request Flow for the Backend Worker Thread 130

7.10 VCL – vcl_backend_response 131

7.10.1 vcl_backend_response 132

7.10.2 The Initial Value of beresp.ttl 133

7.10.3 Example: Setting TTL of .jpg URLs to 60 seconds 135

7.10.4 Example: Cache .jpg for 60 seconds only if s-maxage is not present 136

7.10.5 Exercise: Avoid Caching a Page 137

7.10.6 Exercise: Either use s-maxage or set TTL by file type 138

7.11 Waiting State 139

7.12 Summary of VCL Basics 140

8 VCL Subroutines 141

8.1 VCL – vcl_recv 142

8.1.1 Revisiting built-in vcl_recv 144

8.1.2 Example: Basic Device Detection 145

8.1.3 Exercise: Rewrite URL and Host Header Fields 146

8.2 VCL – vcl_pass 147

8.2.1 hit-for-pass 148

8.3 VCL – vcl_backend_fetch 149

8.4 VCL – vcl_hash 150

8.5 VCL – vcl_hit 151

8.6 VCL – vcl_miss 152

8.7 VCL – vcl_deliver 153

8.8 VCL – vcl_synth 154

8.8.1 Example: Redirecting requests with vcl_synth 156

8.9 Exercise: Modify the HTTP response header fields 157

8.10 Exercise: Change the error message 158

9 Cache Invalidation 159

9.1 Purge - Bans - Cache Misses - Surrogate Keys 161

9.2 HTTP PURGE 163

9.2.1 VCL – vcl_purge 164

9.2.2 Example: PURGE 165

9.2.3 Exercise: PURGE an article from the backend 166

9.2.4 PURGE with restart return action 167

9.3 Softpurge 169

9.4 Banning 170

9.4.1 Lurker-Friendly Bans 173

9.5 Exercise: Write a VCL program using purge and ban 175

9.6 Force Cache Misses 176

9.7 Hashtwo/Xkey (Varnish Software Implementation of Surrogate Keys) 177

9.7.1 Example Using Hashtwo or Xkey 179

10 Saving a Request 181

10.1 Directors 182

10.1.1 Random Directors 184

10.2 Health Checks 185

10.2.1 Analyzing health probes 187

10.2.2 Demo: Health Probes 189

10.3 Grace Mode 190

10.3.1 Timeline Example 192

10.3.2 Exercise: Grace 193

10.4 retry Return Action 194

10.5 Saint Mode 195

10.6 Tune Backend Properties 197

10.7 Access Control Lists (ACLs) 198

10.8 Compression 200

11 Content Composition 202

11.1 A Typical Website 203

11.2 Cookies 204

11.2.1 Vary and Cookies 205

11.2.2 Best Practices for Cookies 206

11.2.3 Exercise: Handle Cookies with Vary and hash_data with HTTPie 207

11.3 Edge Side Includes 208

11.3.1 Basic ESI usage 209

11.3.2 Example: Using ESI 210

11.3.3 Exercise: Enable ESI and Cookies 211

11.3.4 Testing ESI without Varnish 212

11.4 Masquerading AJAX requests 213

11.4.1 Exercise: write a VCL that masquerades XHR calls 214

12 Varnish Plus Software Components 215

12.1 Varnish Administration Console (VAC) 216

12.1.1 Overview Page of the Varnish Administration Console 217

12.1.2 Configuration Page of the Varnish Administration Console 218

12.1.3 Banning Page of the Varnish Administration Console 219

12.2 Varnish Custom Statistics (VCS) 220

12.2.1 VCS Data Model 222

12.2.2 VCS API 225

12.2.3 Screenshots of GUI 227

12.3 Varnish High Availability (VHA) 228

12.4 SSL/TLS frontend support with hitch 229

13 Appendix A: Resources 231

14 Appendix B: Varnish Programs 232

14.1 varnishtop 233

14.2 varnishncsa 234

14.3 varnishhist 235

14.4 Exercise: Try varnishstat, varnishlog and varnishhist 236

14.5 varnishtest 237

14.5.1 The Varnish Test Case (VTC) Language 238

14.5.2 Synchronization in Varnish Tests 240

14.5.3 Running Your Varnish Test Cases 242

14.5.4 Exercise: Test Apache as Backend with varnishtest 243

14.5.5 Setting Parameters in varnishtest 244

14.5.6 Fetch Data with varnishtest 246

14.5.7 Understanding Expires in varnishtest 247

14.5.8 Example of Transactions in varnishtest 248

14.5.9 logexpect 249

14.5.10 Exercise: Assert Counters in varnishtest 251

14.5.11 Understanding Vary in varnishtest 252

14.5.12 Understanding Last-Modified and If-Modified-Since in
varnishtest

254

14.5.13 Understanding Cache-Control in varnishtest 256

14.5.14 VCL in varnishtest 258

14.5.15 PURGE in varnishtest 259

14.5.16 Cache Invalidation in varnishtest 261

14.5.17 Understanding Grace using varnishtest 262

14.5.18 Exercise: Handle Cookies with Vary and hash_data() in
varnishtest

264

14.5.19 Understanding ESI in varnishtest 265

15 Appendix C: Extra Material 267

15.1 ajax.html 268

15.2 article.php 269

15.3 cookies.php 270

15.4 esi-top.php 271

15.5 esi-user.php 272

15.6 httpheadersexample.php 274

15.7 purgearticle.php 277

15.8 test.php 278

15.9 set-cookie.php 279

15.10 VCL Migrator from Varnish 3 to Varnish 4 280

16 Appendix D: VMOD Development 281

16.1 VMOD Basics 282

16.2 varnishtest script program 283

16.2.1 VTC 284

16.2.2 Run Your Varnish Tests 286

16.3 Hello, World! VMOD 287

16.3.1 Declaring and Documenting Functions 288

16.3.2 Implementing Functions 290

16.3.3 The Workspace Memory Model 291

16.3.4 Headers 292

16.3.5 Exercise: Build and Test libvmod_example 293

16.4 Cowsay: Hello, World! 294

16.4.1 Cowsay Varnish Tests 295

16.4.1.1 Exercise: Add Assertions To Your Varnish Tests 297

16.4.2 vmod_cowsay.vcc 298

16.4.3 vmod_cowsay.c 299

16.5 Resources 300

17 Appendix E: Varnish Three Letter Acronyms 301

18 Appendix F: Apache as Backend 303

19 Appendix G: Solutions 304

19.1 Solution: Install Varnish 305

19.2 Solution: Test Apache as Backend with varnishtest 308

19.3 Solution: Assert Counters in varnishtest 309

19.4 Solution: Tune first_byte_timeout and test it against your real backend 310

19.5 Solution: Tune first_byte_timeout and test it against mock-up server 311

19.6 Solution: Configure Threading with varnishadm and varnishstat 312

19.7 Solution: Configure Threading with varnishtest 313

19.8 Solution: Rewrite URL and Host Header Fields 315

19.9 Solution: Avoid caching a page 317

19.10 Solution: Either use s-maxage or set TTL by file type 318

19.11 Solution: Modify the HTTP response header fields 319

19.12 Solution: Change the error message 320

19.13 Solution: PURGE an article from the backend 322

19.14 Solution: Write a VCL program using purge and ban 325

19.15 Solution: Handle Cookies with Vary in varnishtest 326

19.16 Solution: Handle Cookies with hash_data() in varnishtest 328

19.17 Solution: Write a VCL that masquerades XHR calls 330

Abstract
The Varnish Book is the training material for Varnish Plus courses. This book teaches such concepts
to understand the theory behind Varnish Cache 4. Covered are the Varnish finite state machine,
design principles, HTTP, cache invalidation and more. With these foundations, the book builds
practical knowledge on Varnish Configuration Language (VCL), Varnish Test Code (VTC) and Varnish
utility programs such as varnishlog, varnishstat and varnishtest. Examples and exercises
develop the needed skills to administrate and extend the functionality of Varnish. Also included are
appendices that explain how to develop Varnish Modules (VMODs) and how to use selected modules
of Varnish Plus.

Preface

• Course for Varnish Plus

• Learn specific features depending the course and your needs

• Necessary Background

• How to Use the Book

• Acknowledgments

After finishing this course, you will be able to install and configure the Varnish server, and
write effective VCL code. The Varnish Book is designed for attendees of Varnish Plus courses. Most
of the presented material in this book applies to both, the open source Varnish Cache and the
commercial edition Varnish Cache Plus. Therefore, you can also refer to the Varnish Cache
documentation at https://www.varnish-cache.org/docs/4.0/.

Varnish Plus is a commercial suite by Varnish Software that offers products for scalability,
customization, monitoring, and expert support services. The engine of Varnish Plus is Varnish Cache
Plus, which is the enhanced commercial edition of Varnish Cache. Varnish Cache Plus should not be
confused with Varnish Plus, a product offering by Varnish Software. Varnish Cache Plus is one of the
software components available for Varnish Plus customers.

For simplicity, the book refers to Varnish Cache or Varnish Cache Plus as Varnish when there is no
difference between them. There is more information about differences between Varnish Cache and
Varnish Cache Plus in the Varnish Cache and Varnish Plus chapter.

The goal of this book is to make you confident when using Varnish. Varnish instructors focus on your
area, needs or interest. Varnish courses are usually flexible enough to make room for it.

The instructor will cover selected material for the course you take. The System Administration
(Admin) course provides attendees with the necessary knowledge to troubleshoot and tune common
parameters of a Varnish server. The Web Developer (Webdev) course teaches how to adapt web
applications so that they work with Varnish, which guarantees a fast experience for visitors of any
website. Besides that, other courses may also be taught with this book.

https://www.varnish-cache.org/docs/4.0/

Necessary Background
The Admin course requires that you:

• have expertise in a shell on a Linux/UNIX machine, including editing text files and starting
daemons,

• understand HTTP cache headers,

• understand regular-expressions, and

• be able to install the software listed below.

The Webdev course requires that you:

• have expertise in a shell on a Linux/UNIX machine, including editing text files and starting
daemons,

• understand HTTP cache headers,

• understand regular-expressions, and

• be able to install the software listed below.

You do not need background in theory or application behind Varnish to complete this course.
However, it is assumed that you have experience and expertise in basic UNIX commands, and that
you can install the following software:

• Varnish Cache 4.x or Varnish Cache Plus 4.x,

• Apache/2.4 or later,

• HTTPie 0.8.0 or later,

• PHP 5.4 or later, and

• curl – command line tool for transferring data with URL syntax

More specific required skills depend on the course you take. The book starts with the installation of
Varnish and navigation of some of the common configuration files. This part is perhaps the most
UNIX-centric part of the course.

How to Use the Book

• Most of the material in this book applies to both: Varnish Cache and Varnish Cache Plus. Parts
that apply only to Varnish Cache Plus are clearly stated.

• Varnish caching mechanisms are different than in other caching technologies. Open your mind
and try to think different when using Varnish.

• The instructor guides you through the book.

• Use the manual pages and help options.

• See Appendix E: Varnish Three Letter Acronyms for a list of acronyms.

The Varnish Book is designed to be used as training material under the Varnish Plus course taught
by a certified instructor. Under the course, the instructor guides you and selects the relevant
sections to learn. However, you can also use this book as self-instructional material.

There are almost always many ways to do an exercise. The solutions provided in Appendix G:
Solutions are not necessarily better than yours.

Varnish installs several reference manuals that are accessible through the manual page command
man. You can issue the command man -k varnish to list the manual pages that mention Varnish
in their short description. In addition, the vsl man page that explains the Varnish Shared memory
Logging (VSL). This man page does not come out when issuing man -k varnish, because it does
not contain the word varnish in its short description.

The command man varnishd, for example, retrieves the manual page of the Varnish HTTP
accelerator daemon. Also, some commands have a help option to print the usage of the command.
For example, varnishlog -h prints the usage and options of the command with a short
description of them.

In addition, you should refer to the documentation of Varnish Cache and Varnish Cache Plus. This
documentation provides you extended details on the topics covered in this book and more. To
access to this documentation, please visit https://www.varnish-software.com/resources.

The Varnish installation described in this book uses Ubuntu Linux 14.04 LTS (trusty), therefore most
of the commands instructed in this book are for this Linux distribution. We point out some
differences on how to configure Varnish for other Linux distributions, but you should reference your
Linux distribution's documentation for more details.

The book is written with different formatting conventions. Varnish Configuration Language (VCL)
code uses the mono-spaced font type inside boxes:

vcl 4.0;

backend default {
 .host = "127.0.0.1";
 .port = "8080";
}

sub vcl_recv {
 # Do request header transformations here.
 if (req.url ~ "^/admin") {
 return(pass);
 }
}

The first occurrence of a new term is usually its definition, and appears in italics. File names are
indicated like this: /path/to/yourfile. Important notes, tips and warnings are also inside boxes,
but they use the normal body text font type.

https://www.varnish-software.com/resources

Resources, and Errata

• https://varnish-cache.org

• https://varnish-software.com/academy

• #varnish-hacking and #varnish on irc.linpro.net.

• https://github.com/varnish/Varnish-Book/

• https://www.varnish-cache.org/docs/trunk/users-guide/troubleshooting.html

• https://www.varnish-cache.org/trac/wiki/VCLExamples

This book is meant to be understandable to everyone who takes a Varnish Plus course and has the
required skills. If you find something unclear, do not be shy and blame yourself, ask your instructor
for help. You can also contact the Varnish open source community at https://varnish-cache.org. To
book training, please look at https://varnish-software.com/academy.

Additional examples from different Varnish versions are available at
https://www.varnish-cache.org/trac/wiki/VCLExamples. These examples are maintained by the
community.

For those interested in development, the developers arrange weekly bug washes were recent tickets
and development is discussed. This usually takes place on Mondays around 13:00 CET on the IRC
channel #varnish-hacking on irc.linpro.net.

Errata, updates and general improvements of this book are available at its repository
https://github.com/varnish/Varnish-Book.

Acknowledgments
In addition to the authors, the following deserve special thanks (in no particular order):

• Rubén Romero

• Dag Haavi Finstad

• Martin Blix Grydeland

• Reza Naghibi

• Federico G. Schwindt

• Dridi Boukelmoune

• Lasse Karstensen

• Per Buer

• Sevan Janiyan

• Kacper Wysocki

• Magnus Hagander

• Arianna Aondio

• Poul-Henning Kamp

• Guillaume Quintard

• Everyone who has participated on the training courses

https://varnish-cache.org
https://varnish-software.com/academy
https://github.com/varnish/Varnish-Book/
https://www.varnish-cache.org/docs/trunk/users-guide/troubleshooting.html
https://www.varnish-cache.org/trac/wiki/VCLExamples
https://varnish-cache.org
https://varnish-software.com/academy
https://www.varnish-cache.org/trac/wiki/VCLExamples
https://github.com/varnish/Varnish-Book

1 Introduction
Table of contents:

• What is Varnish?

• Benefits of Varnish

• Open source / Free software

• Varnish Software: The company

• What is Varnish Plus?

• Varnish: more than a cache server

• History of Varnish

• Varnish Governance Board (VGB)

Chapter 1 Introduction Page 19

1.1 What is Varnish?

Figure 1: Varnish is more than a reverse proxy

Varnish is a reverse HTTP proxy, sometimes referred to as an HTTP accelerator or a web accelerator.
A reverse proxy is a proxy server that appears to clients as an ordinary server. Varnish stores
(caches) files or fragments of files in memory that are used to reduce the response time and network
bandwidth consumption on future, equivalent requests. Varnish is designed for modern hardware,
modern operating systems and modern work loads.

Varnish is more than a reverse HTTP proxy that caches content to speed up your server. Depending
on the installation, Varnish can also be used as:

• web application firewall,

• DDoS attack defender,

• hotlinking protector,

• load balancer,

• integration point,

• single sign-on gateway,

• authentication and authorization policy mechanism,

• quick fix for unstable backends, and

• HTTP router.

Page 20 Chapter 1 Introduction

1.1.1 Varnish is Flexible
Example of Varnish Configuration Language (VCL):

vcl 4.0;

backend default {
 .host = "127.0.0.1";
 .port = "8080";
}

sub vcl_recv {
 # Do request header transformations here.
 if (req.url ~ "^/admin") {
 return(pass);
 }
}

Varnish is flexible because you can configure it and write your own caching policies in its Varnish
Configuration Language (VCL). VCL is a domain specific language based on C. VCL is then translated
to C code and compiled, therefore Varnish executes lightning fast. Varnish has shown itself to work
well both on large (and expensive) servers and tiny appliances.

Chapter 1 Introduction Page 21

1.2 Varnish Cache and Varnish Plus

Table 1: Topics Covered in This Book and Their Availability in Varnish Cache and Varnish Plus

Topic Varnish Cache Varnish Plus

VCL Yes Yes

varnishlog Yes Yes

varnishadm Yes Yes

varnishncsa Yes Yes

varnishstat Yes Yes

varnishhist Yes Yes

varnishtest Yes Yes

varnishtop Yes Yes

directors Yes Yes

purge Yes Yes

ban Yes Yes

force cache misses Yes Yes

vagent2 Yes Yes

Massive Storage Engine (MSE) No Yes

Varnish Administration Console (VAC) No Yes

Varnish Tuner No Yes

Hashtwo (Varnish Software
Implementation of Surrogate Keys)

No Yes

Varnish Custom Statistics (VCS) No Yes

Varnish High Availability (VHA) No Yes

SSL/TLS frontend support with hitch Yes Yes

SSL/TLS backend support No Yes

Varnish Cache is an open source project, and free software. The development process is public and
everyone can submit patches, or just take a peek at the code if there is some uncertainty on how
does Varnish Cache work. There is a community of volunteers who help each other and newcomers.
The BSD-like license used by Varnish Cache does not place significant restriction on re-use of the
code, which makes it possible to integrate Varnish Cache in virtually any solution.

Varnish Cache is developed and tested on GNU/Linux and FreeBSD. The code-base is kept as
self-contained as possible to avoid introducing out-side bugs and unneeded complexity. Therefore,
Varnish uses very few external libraries.

Page 22 Chapter 1 Introduction

Varnish Software is the company behind Varnish Cache. Varnish Software and the Varnish
community maintain a package repository of Varnish Cache for several common GNU/Linux
distributions.

Varnish Software also provides a commercial suite called Varnish Plus with software products for
scalability, customization, monitoring and expert support services. The engine of the Varnish Plus
commercial suite is the enhanced commercial edition of Varnish Cache. This edition is proprietary
and it is called Varnish Cache Plus.

Table 1 shows the components covered in this book and their availability for Varnish Cache users
and Varnish Plus customers. The covered components of Varnish Plus are described in the Varnish
Plus Software Components chapter. For more information about the complete Varnish Plus offer,
please visit https://www.varnish-software.com/what-is-varnish-plus.

At the moment of writing this book, Varnish Cache supports the operating systems and Linux
distributions listed in Table 2.

Table 2: Varnish Cache and Varnish Plus supported platforms

Varnish Cache Varnish Plus

RedHat Enterprise Linux 5 Deprecated Deprecated

RedHat Enterprise Linux 6 Yes Yes

RedHat Enterprise Linux 7 Yes Yes

Ubuntu Linux 12.04 LTS (precise) Yes Yes

Ubuntu Linux 14.04 LTS (trusty) Yes Yes

Debian Linux 7 (wheezy) Yes Yes

FreeBSD 9 Yes No

FreeBSD 10 Yes No

Varnish Cache and Varnish Plus support only 64-bit systems.

Note

Varnish Cache Plus should not be confused with Varnish Plus, a product offering by Varnish
Software. Varnish Cache Plus is one of the software components available for Varnish Plus
customers.

Chapter 1 Introduction Page 23

https://www.varnish-software.com/what-is-varnish-plus

1.3 Varnish Cache and Varnish Software Timeline

• 2005: Ideas! Verdens Gang (www.vg.no, Norway's biggest newspaper) were looking for
alternative cache solutions

• 2006: Work began: Redpill Linpro was in charge of project management, infrastructure and
supporting development. Poul-Henning Kamp did the majority of the actual development.3

• 2006: Varnish 1.0 is released

• 2008: Varnish 2.0 is released

• 2008: varnishtest is introduced

• 2009: The first Varnish User Group Meeting is held in London Roughly a dozen people
participate from all around the world

• 2010: Varnish Software is born as a spin-off to Redpill Linpro AS

• 2011: Varnish 3.0 is released

• 2012: The fifth Varnish User Group Meeting is held in Paris Roughly 70 people participate on the
User-day and around 30 on the developer-day!

• 2012: The Varnish Book is published

• 2013: Varnish Software chosen as a 2013 Red Herring Top 100 Europe company

• 2013: BOSSIE award winner

• 2013: Varnish Software receives World Summit on Innovation & Entrepreneurship Global Hot
100 award

• 2014: Varnish Plus is launched

• 2014: Varnish 4.0 is released

• 2015: Varnish API Engine is released

• 2015: Gartner names Varnish Software as a 2015 ‘Cool Vendor’ in Web-Scale Platforms

• 2015: Varnish Plus supports SSL/TLS

VG, a large Norwegian newspaper, initiated the Varnish project in cooperation with Linpro. The lead
developer of the Varnish project, Poul-Henning Kamp, is an experienced FreeBSD kernel hacker.
Poul-Henning Kamp continues to bring his wisdom to Varnish in most areas where it counts.

From 2006 throughout 2008, most of the development was sponsored by VG, API, Escenic and
Aftenposten, with project management, infrastructure and extra man-power provided by Redpill
Linpro. At the time, Redpill Linpro had roughly 140 employees mostly centered around consulting
services.

Today Varnish Software is able to fund the core development with income from service agreements,
in addition to offering development of specific features on a case-by-case basis. The interest in
Varnish continues to increase. An informal study based on the list of most popular web sites in
Norway indicates that about 75% or more of the web traffic that originates in Norway is served
through Varnish.

Page 24 Chapter 1 Introduction

Varnish development is governed by the Varnish Governance Board (VGB), which thus far has not
needed to intervene. The VGB consists of an architect, a community representative and a
representative from Varnish Software.

As of November 2015, the VGB positions are filled by Poul-Henning Kamp (Architect), Rogier
Mulhuijzen (Community) and Lasse Karstensen (Varnish Software). On a day-to-day basis, there is
little need to interfere with the general flow of development.

Chapter 1 Introduction Page 25

1.4 What Is New in Varnish 4?

• Version statement vcl 4.0;

• req.request is now req.method

• vcl_fetch is now vcl_backend_response

• Directors have been moved to the vmod_directors

• Hash directors as a client directors

• vcl_error is now vcl_backend_error

• error() is now synth(), and you must explicitly return it:
return (synth(999, "Response"));

• Synthetic responses in vcl_synth

• Setting headers on synthetic response bodies made in vcl_synth are now done on
resp.http instead of obj.http.

• obj.* in vcl_error replaced by beresp.* in vcl_backend_error

• hit_for_pass objects are created using beresp.uncacheable

• req.* not available in vcl_backend_response

• bereq.* in vcl_backend_response

• vcl_* prefix reserved for builtin subroutines

• req.backend.healthy replaced by std.healthy(req.backend_hint)

• client.port and server.port replaced by std.port(client.ip) and
std.port(server.ip)

• Cache invalidation with purges is now done via return(purge) in vcl_recv

• obj.* is now read-only

• obj.last_use is retired

• vcl_recv must now return hash instead of lookup

• vcl_hash must now return lookup instead of hash

• vcl_pass must now return fetch instead of pass

• restart in the backend is now retry, this is now called return(retry), and jumps back up
to vcl_backend_fetch

• default VCL is now called builtin VCL

• The builtin VCL now honors Cache-Control: no-cache (and friends) to indicate uncacheable
content from the backend

• remove keyword replaced by unset

• X-Forwarded-For is now set before vcl_recv

Page 26 Chapter 1 Introduction

• session_linger has been renamed to timeout_linger and it is in seconds now (previously
was milliseconds)

• sess_timeout is renamed to timeout_idle

• Increasing sess_workspace is not longer necessary, you may need to increase either
workspace_backend or workspace_client

• thread_pool_purge_delay is renamed to thread_pool_destroy_delay and it is in
seconds now

• thread_pool_add_delay and thread_pool_fail_delay are in seconds now

• New parameter vcc_allow_inline_c to disable inline C in your VCL

• New query language to filter logs: -m option replaced by -q

The above list tries to summarize the most important changes from Varnish Cache 3 to Varnish
Cache 4. For more information, please visit:
https://www.varnish-cache.org/docs/trunk/whats-new/upgrading.html

If you want to migrate your VCL code from Varnish 3 to Varnish 4, you may be interested in looking
at the varnish3to4 script. See the VCL Migrator from Varnish 3 to Varnish 4 section for more
information.

Chapter 1 Introduction Page 27

https://www.varnish-cache.org/docs/trunk/whats-new/upgrading.html

2 Design Principles
Varnish is designed to:

• Solve real problems

• Run on modern hardware (64-bit multi-core architectures)

• Work with the kernel, not against it

• Translate Varnish Configuration Language (VCL) to C programming language

• Be extendible via Varnish Modules (VMODs)

• Reduce lock-contention via its workspace-oriented shared memory model

The focus of Varnish has always been performance and flexibility. Varnish is designed for hardware
that you buy today, not the hardware you bought 15 years ago. This is a trade-off to gain a simpler
design and focus resources on modern hardware. Varnish is designed to run on 64-bit architectures
and scales almost proportional to the number of CPU cores you have available. Though CPU-power
is rarely a problem.

32-bit systems, in comparison to 64-bit systems, allow you to allocate less amount of virtual memory
space and less number of threads. The theoretical maximum space depends on the operating
system (OS) kernel, but 32-bit systems usually are bounded to 4GB. You may get, however, about
3GB because the OS reserves some space for the kernel.

Varnish uses a workspace-oriented memory-model instead of allocating the exact amount of space it
needs at run-time. Varnish does not manage its allocated memory, but it delegates this task to the
OS because the kernel can normally do this task better than a user-space program.

Event filters and notifications facilities such as epoll and kqueue are advanced features of the OS
that are designed for high-performance services like Varnish. By using these, Varnish can move a lot
of the complexity into the OS kernel which is also better positioned to decide which threads are
ready to execute and when.

Varnish uses the Varnish Configuration Language (VCL) that allows you to specify exactly how to use
and combine the features of Varnish. VCL is translated to C programming language code. This code is
compiled with a standard C compiler and then dynamically linked directly into Varnish at run-time.

When you need functionalities that VCL does not provide, e.g., look for an IP address in a database,
you can write raw C code in your VCL. That is in-line C in VCL. However, in-line C is strongly
discouraged because in-line C is more difficult to debug, maintain and develop with other
developers. Instead in adding in-line C, you should modularized your C code in Varnish modules, also
known as VMODs.

VMODs are typically coded in VCL and C programming language. In practice, a VMOD is a shared
library with functions that can be called from VCL code.

The standard (std) VMOD, included in Varnish Cache, extends the functionality of VCL. std VMOD
includes non-standard header manipulation, complex header normalization and access to
memcached among other functionalities. Appendix D: VMOD Development explains in more details
how VMODs work and how to develop yours.

Page 28 Chapter 2 Design Principles

The Varnish Shared memory Log (VSL) allows Varnish to log large amounts of information at almost
no cost by having other applications parse the data and extract the useful bits. This design and other
mechanisms decrease lock-contention in the heavily threaded environment of Varnish.

To summarize: Varnish is designed to run on modern hardware under real work-loads and to solve
real problems. Varnish does not cater to the "I want to make Varnish run on my 486 just
because"-crowd. If it does work on your 486, then that's fine, but that's not where you will see our
focus. Nor will you see us sacrifice performance or simplicity for the sake of niche use-cases that can
easily be solved by other means -- like using a 64-bit OS.

Chapter 2 Design Principles Page 29

2.1 How objects are stored

• Object: local store of HTTP response message

• Objects in Varnish are stored in memory and addressed by hash keys

• You can control the hashing

• Multiple objects can have the same hash key

Objects are local stores of response messages as defined in https://tools.ietf.org/html/rfc7234. They
are mapped with a hash key and they are stored in memory. References to objects in memory are
kept in a hash tree.

A rather unique feature of Varnish is that it allows you to control the input of the hashing algorithm.
The key is by default made out of the HTTP Host header and the URL, which is sufficient and
recommended for typical cases. However, you are able to create the key from something else. For
example, you can use cookies or the user-agent of a client request to create a hash key.

HTTP specifies that multiple objects can be served from the same URL, depending on the
preferences of the client. For instance, content in gzip format is sent only to clients that indicate gzip
support. Varnish stores various objects under one key. Upon a client request, Varnish selects the
object that matches the client preferences.

Page 30 Chapter 2 Design Principles

https://tools.ietf.org/html/rfc7234

2.2 Object Lifetime

Figure 2: Object Lifetime

Figure 2 shows the lifetime of cached objects. A cached object has an origin timestamp t_origin
and three duration attributes: 1) TTL, 2) grace, and 3) keep. t_origin is the time when an object
was created in the backend. An object lives in cache until TTL + grace + keep elapses. After that
time, the object is removed by the Varnish daemon.

In a timeline, objects within the time-to-live TTL are considered fresh objects. Stale objects are those
within the time period TTL and grace. Objects within t_origin and keep are used when applying
conditions with the HTTP header field If-Modified-Since.

The VCL – vcl_backend_fetch and VCL – vcl_backend_response sections explain how Varnish handles
backend responses and how these duration attributes affect subsequent actions.

Chapter 2 Design Principles Page 31

3 Getting Started
In this chapter, you will:

• learn about the Varnish distribution,

• install Varnish, and

• cover basic Varnish configuration.

Most of the commands you will type in this course require root privileges. You can get temporary
root privileges by typing sudo <command>, or permanent root privileges by typing sudo -i.

In Varnish terminology, a backend is the origin server. In other words, it is whatever server Varnish
talks to fetch content. This can be any sort of service as long as it understands HTTP. Most of the
time, Varnish talks to a web server or an application frontend server. In this book, we use backend,
origin server, web server or application frontend server depending the context.

Page 32 Chapter 3 Getting Started

3.1 Varnish Distribution
Utility programs part of the Varnish distribution:

• varnishd

• varnishtest

• varnishadm

• varnishlog

• varnishstat

• and more

The Varnish distribution includes several utility programs that you will use in this course. You will
learn how to use these programs as you progress, but it is useful to have a brief introduction about
them before we start.

The central block of Varnish is the Varnish daemon varnishd. This daemon accepts HTTP requests
from clients, sends requests to a backend, caches the returned objects and replies to the client
request. varnishd is further explained in the Varnish Architecture section.

varnishtest is a script driven program used to test your Varnish installation. varnishtest is very
powerful because it allows you to create client mock-ups, fetch content from mock-up or real
backends, interact with your actual Varnish configuration, and assert the expected behavior.
varnishtest is also very useful to learn more about the behavior of Varnish.

varnishadm controls a running Varnish instance. The varnishadm utility establishes a command
line interface (CLI) connection to varnishd. This utility is the only one that may affect a running
instance of Varnish. You can use varnishadm to:

• start and stop varnishd,

• change configuration parameters,

• reload the Varnish Configuration Language (VCL),

• view the most up-to-date documentation for parameters, and

• more.

The Management Interface varnishadm section explains in more detail this utility.

The Varnish log provides large amounts of information, thus it is usually necessary to filter it. For
example, "show me only what matches X". varnishlog does precisely that. You will learn more
about varnishlog in the Examining Varnish Server's Output chapter.

varnishstat is used to access global counters. It provides overall statistics, e.g the number of total
requests, number of objects, and more. varnishstat is particularly useful when using it together
with varnishlog to analyze your Varnish installation. The varnishstat section explains in detail this
utility.

In addition, there are other utility programs such as varnishncsa, varnishtop and varnishhist.
Appendix B: Varnish Programs explains them.

Chapter 3 Getting Started Page 33

3.2 Exercise: Install Varnish

• Install Varnish

• Use packages provided by

• varnish-software.com for Varnish Cache Plus

• varnish-cache.org for Varnish Cache

• When you are done, verify your Varnish version, run varnishd -V

You may skip this exercise if already have a well configured environment to test Varnish. In case you
get stuck, you may look at the proposed solution.

Table 3: Different Locations of the Varnish Configuration File

SysV SysV systemd systemd

Ubuntu/Debian RHEL/CentOS Ubuntu/Debian
Fedora/RHEL
7+/CentOS 7+

/etc/default/varnish /etc/sysconfig/varnish [2] /etc/varnish/varnish.par
ams

/etc/default/varnishlog [1] [3] [5]

/etc/default/varnishncsa [1] [4] [5]

[1] There is no configuration file. Use the command
chkconfig varnishlog/varnishncsa on/off instead.

[2] Create a drop-in systemd service file in
/etc/systemd/system/varnish.service.d/customexec.conf:

[Service]
ExecStart=
ExecStart=/usr/sbin/varnishd -a :80 -T localhost:6082 -f \
/etc/varnish/default.vcl -S /etc/varnish/secret -s malloc,256m

This file overrides the ExecStart option of the default configuration shipped with Varnish Cache.
Run systemctl daemon-reload to make sure systemd picks up the new configuration before
restarting Varnish.

[3] Create a drop-in systemd service file in
/etc/systemd/system/varnishlog.service.d/customexec.conf to customize your
varnishlog configuration.

[4] Create a drop-in systemd service file in
/etc/systemd/system/varnishncsa.service.d/customexec.conf. In this file you can for
example set VARNISHNCSA_ENABLED=1.

Page 34 Chapter 3 Getting Started

[5] There is no configuration file. Use the command
systemctl start/stop/enable/disable/ varnishlog/varnishncsa instead.

The configuration file is used to give parameters and command line arguments to the Varnish
daemon. This file also specifies the location of the VCL file. Modifications to this file require to run
service varnish restart for the changes to take effect.

The location of the Varnish configuration file depends on the operating system and whether it uses
the init system of SysV, or systemd. Table 3 shows the locations for each system installation.

To install packages on Ubuntu or Debian, use the command apt-get install <package>, e.g.,
apt-get install varnish. For CentOS, RHEL or Fedora, use yum install <package>.

You might want to look at Solution: Install Varnish, if you need help.

If the command service varnish restart fail, try to start Varnish manually to get direct
feedback from the shell. Command example:

$ sudo /usr/sbin/varnishd -j unix,user=varnish,ccgroup=varnish \
-P /var/run/varnish.pid -f /etc/varnish/default.vcl -a :80 -a :6081,PROXY \
-T 127.0.0.1:6082 -t 120 -S /etc/varnish/secret \
- s malloc,256MB -F

Chapter 3 Getting Started Page 35

3.3 Exercise: Configure Varnish

• Configure listening ports for client requests and Varnish administration

Varnish DAEMON_OPTS:

-a ${VARNISH_LISTEN_ADDRESS}:${VARNISH_LISTEN_PORT}
-T ${VARNISH_ADMIN_LISTEN_ADDRESS}:${VARNISH_ADMIN_LISTEN_PORT}

• Configure one backend in VCL

See Table 3 and locate the Varnish configuration file for your installation. Open and edit that file to
listen to client requests on port 80 and have the management interface on port 1234.

In Ubuntu and Debian, this is configured with options -a and -T of variable DAEMON_OPTS. In
CentOS, RHEL, and Fedora, use VARNISH_LISTEN_PORT and VARNISH_ADMIN_LISTEN_PORT
respectively.

In order for changes in the configuration file to take effect, varnishd must be restarted. The safest
way to restart Varnish is by using service varnish restart.

The default VCL file location is /etc/varnish/default.vcl. You can change this location by
editing the configuration file. The VCL file contains the backend definitions.

In this book, we use Apache as backend. Before continuing, make sure you have Apache installed
and configured to listen on port 8080. See Appendix F: Apache as Backend if you do not know how
to do it.

Edit /etc/varnish/default.vcl to use Apache as backend:

backend default {
 .host = "127.0.0.1";
 .port = "8080";
}

Varnish Cache Plus supports SSL/TLS encryption. To encrypt connections between Varnish and the
backend, you specify it as follows:

backend default {
 .host = "host.name";
 .port = "https"; # This defaults to https when SSL
 .ssl = 1; # Turns on SSL support
 .ssl_nosni = 1; # Disable SNI extension
 .ssl_noverify = 1; # Don't verify peer
}

For Varnish to accept incoming encrypted connections from clients, you need a terminator for
encrypted connections such as hitch https://github.com/varnish/hitch. Varnish Plus 4.1 has

Page 36 Chapter 3 Getting Started

https://github.com/varnish/hitch

integrated this functionality and you can easily configure it as detailed in SSL/TLS frontend support
with hitch.

Chapter 3 Getting Started Page 37

3.3.1 VCL Reload

• varnishd can reload VCL programs without restart

service varnish reload

or

varnishadm vcl.load vcl01 /etc/varnish/default.vcl
varnishadm vcl.use vcl01

service varnish reload is a shortcut to reload VCL programs.
varnishadm vcl.load <compiledVCL> <VCLsourcecode> compiles the VCL program you
specify. You can have multiple compiled files in Varnish. To see them, run:

varnish vcl.list

To apply a compiled VCL program, type:

varnishadm vcl.use <compiledVCL>

This command does not restart varnishd, it only reloads the compiled VCL code.

The result of your configuration is resumed in Table 4.

Table 4: Varnish and Backend Configuration

Server Result Configuration file

Varnish Listens on port 80 /etc/default/varnish *

Varnish Uses backend on
localhost:8080

/etc/varnish/default.vcl

Apache Listens on port 8080 /etc/apache2/ports.conf * and
/etc/apache2/sites-enabled/000-default *

* These files are for a SysV Ubuntu/Debian configuration

You can get an overview over services listening on TCP ports by issuing the command
netstat -nlpt. Within the result, you should see something like:

tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 9223/varnishd
tcp 0 0 127.0.0.1:1234 0.0.0.0:* LISTEN 9221/varnishd

Page 38 Chapter 3 Getting Started

Warning

If you have Security-Enhanced Linux (SELinux), be aware that SELinux defines ports 6081 and
6082 for varnishd. If you need to use another port number, you need either to disable
SELinux or set the boolean varnishd_connect_any variable to 1. You can do that by
executing the command sudo setsebool varnishd_connect_any 1.

Tip

Issue the command man vcl to see all available options to define a backend.

Tip

You can also configure Varnish via the Varnish Administration Console (VAC).

Chapter 3 Getting Started Page 39

Figure 3: GUI to configure Varnish via the Varnish Administration Console (VAC).

Page 40 Chapter 3 Getting Started

3.3.2 Test Varnish Using Apache as Backend

• Run http -p Hh localhost

• Your output should look as:

http -p Hh localhost
GET / HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate, compress
Host: localhost
User-Agent: HTTPie/0.8.0

HTTP/1.1 200 OK
Accept-Ranges: bytes
Age: 0
Connection: keep-alive
Content-Encoding: gzip
Content-Length: 3256
Content-Type: text/html
Date: Wed, 18 Mar 2015 13:55:28 GMT
ETag: "2cf6-5118f93ad6885-gzip"
Last-Modified: Wed, 18 Mar 2015 12:53:59 GMT
Server: Apache/2.4.7 (Ubuntu)
Vary: Accept-Encoding
Via: 1.1 varnish-plus-v4
X-Varnish: 32770

You can test your Varnish installation by issuing the command http -p Hh localhost. If you see
the HTTP response header field Via containing varnish, then your installation is correct.

The X-Varnish HTTP header field contains the Varnish Transaction ID (VXID) of the client request
and if applicable, the VXID of the backend transaction that stored in cache the object delivered.
X-Varnish is useful to find the correct log entries in the Varnish log. For a cache hit, X-Varnish
contains both the ID of the current request and the ID of the request that populated the cache. You
will learn more about VXIDs in the Transactions section.

You can also define and test connectivity against any backend in varnishtest. Learn how to it by
doing the Exercise: Test Apache as Backend with varnishtest.

Chapter 3 Getting Started Page 41

3.4 The Management Interface varnishadm
You can use the varnishadm utility to:

• start and stop the cacher (aka child) process

• change configuration parameters without restarting Varnish

• reload the Varnish Configuration Language (VCL) without restarting Varnish

• view the most up-to-date documentation for parameters

• varnishadm help and man varnishadm

Varnish offers a management command line interface (CLI) to control a running Varnish instance.
This interface implements a list of management commands in the varnishadm utility program.
varnishadm establishes a connection to the Varnish daemon varnishd.

To connect to the management interface, issue the command varnishadm. If there are many
Varnish instances running in one machine, specify the instance with the -n option. Keep the
following in mind when using the management interface:

1. Changes take effect on the running Varnish daemon instance without need to restart it.

2. Changes are not persistent across restarts of Varnish. If you change a parameter and you want
the change to persist after you restart Varnish, you need to store your changes in the
configuration file of the boot script. The location of the configuration file is is in Table 3

varnishadm uses a non-encrypted key stored in a secret file to authenticate and connect to a
Varnish daemon. You can now provide access to the interface on a per user basis by adjusting the
read permission on the secret file. The location of the secret file is /etc/varnish/secret by
default, but you can use the -S option to specify other location. The content of the file is a shared
secret, which is a string generated under Varnish installation.

The management interface authenticates with a challenge-response mechanism. Therefore, the
shared secret is never transmitted, but a challenge and the response to the challenge. This
authentication mechanism offers a reasonably good access control, but it does not protect the data
transmitted over the connection. Therefore, it is very important to avoid eavesdroppers like in the
man-in-the-middle attack. The simplest way to avoid eavesdroppers is to configure the management
interface listening address of varnishd to listen only on localhost (127.0.0.1). You configure this
address with the -T option of the varnishd command.

Tip

Varnish provides many on-line reference manuals. To learn more about varnishadm, issue
man varnishadm. To check the Varnish CLI manual page, issue man varnish-cli.

Page 42 Chapter 3 Getting Started

Tip

You can also access the varnishadm via the Varnish Administration Console (VAC). To do
that, you just have to navigate to the CONFIGURE tab and click on the Varnish server you
want to administrate. Then, varnishadm is ready to use in a terminal emulator right in your
web browser.

Figure 4: Access to varnishadm by clicking on the Varnish server that you want to
administrate.

Figure 5: Terminal emulator in your web browser.

Chapter 3 Getting Started Page 43

3.5 More About Varnish Configuration

Table 5: Varnish Configuration Types

Configuration Type Restart Required Persistence at next restart

Command line options Yes If stored in the configuration file as part of
DAEMON_OPTS

Tunable parameters No (if changed in
varnishadm)

If stored in the configuration file as part of
DAEMON_OPTS

Configuration in VCL No Yes

The location of the configuration file is in Table 3.

Table 6: How to reload Varnish

Command Result

service varnish restart Restarts Varnish using the operating system mechanisms.
Caches are flushed.

service varnish reload Only reloads the VCL. Caches are not affected.

varnishadm vcl.load
<configname> <filename> and
varnishadm vcl.use
<configname>

Can be used to manually reload VCL. The service
varnish reload command does this for you
automatically.

varnishadm param.set <param>
<value>

Can be used to set parameters without restarting Varnish.

Using the service commands is recommended, safe and fast.

Command line options and tunable parameters are used to: 1) define how Varnish should work with
operating system and hardware, and 2) set default values. Configuration in VCL defines how Varnish
should interact with web servers and clients.

Almost every aspect of Varnish can be reconfigured without restarting Varnish. Notable exceptions
are: 1) allocated memory size for caching, 2) cache file location, 3) ownership (for user and group
privileges) of the Varnish daemon, and 4) the hashing algorithm.

Some parameters changes require to restart Varnish to take effect. For example, the modification of
the listening port. Other changes might not take effect immediately, but restart is not required.
Changes to cache time-to-live (TTL), for instance, take effect only after the current cached objects
expire. In this example, the value of the TTL parameter is only applicable to caches fetched after the
TTL modification.

param.show <parameter> outputs a description of parameter. The description includes when and
how modifications takes effect, and the default and current value of the parameter.

Page 44 Chapter 3 Getting Started

There are other ways to reload VCL and make parameter-changes take effect, mostly using the
varnishadm tool. However, using the service varnish reload and
service varnish restart commands is a good habit.

Note

If you want to know how the service varnish-commands work, look at the script that runs
behind the scenes. The script is in /etc/init.d/varnish.

Warning

The varnish script-configuration (located under /etc/default/ or /etc/sysconfig/) is directly
sourced as a shell script. Pay close attention to any backslashes (\) and quotation marks that
might move around as you edit the DAEMON_OPTS environmental variable.

Chapter 3 Getting Started Page 45

3.6 Command Line Configuration
Relevant options for the course are:
-a <[hostname]:port> listening address and port for client requests
-f <filename> VCL file
-p <parameter=value> set tunable parameters
-S <secretfile> shared secret file for authorizing access to

the management interface
-T <hostname:port> listening address and port for the

management interface
-s <storagetype,options> where and how to store objects

All the options that you can pass to the varnishd binary are documented in the varnishd(1)
manual page (man varnishd). You may want to take a moment to skim over the options mentioned
above.

For Varnish to start, you must specify a backend. You can specify a backend by two means: 1) declare
it in a VCL file, or 2) use the -b to declare a backend when starting varnishd.

Though they are not strictly required, you almost always want to specify a -s to select a storage
backend, -a to make sure Varnish listens for clients on the port you expect and -T to enable a
management interface, often referred to as a telnet interface.

For both -T and -a, you do not need to specify an IP, but can use :80 to tell Varnish to listen to
port 80 on all IPs available. Make sure you do not forget the colon, as -a 80 tells Varnish to listen to
the IP with the decimal-representation "80", which is almost certainly not what you want. This is a
result of the underlying function that accepts this kind of syntax.

You can specify -p for parameters multiple times. The workflow for tuning Varnish parameters
usually is that you first try the parameter on a running Varnish through the management interface to
find the value you want. Then, you store the parameter and value in a configuration file. This file is
read every time you start Varnish.

The -S option specifies a file which contains a secret to be used for authentication. This can be used
to authenticate with varnishadm -S as long as varnishadm can read the same secret file -- or
rather the same content: The content of the file can be copied to another machine to allow
varnishadm to access the management interface remotely.

Note

Varnish requires at least one backend, which is normally specified in the VCL file. The VCL file
is passed to varnishd with the -f <filename.vcl> option. However, it is possible to start
Varnish without a VCL file. In this case, the backend is passed directly to varnishd with the
-b <hostname:port> option. -f and -b are mutually exclusive.

Page 46 Chapter 3 Getting Started

Tip

Type man varnishd to see all options of the Varnish daemon.

Chapter 3 Getting Started Page 47

3.7 Defining a Backend in VCL
/etc/varnish/default.vcl

vcl 4.0;

backend default {
 .host = "localhost";
 .port = "8080";
}

The above example defines a backend named default, where the name default is not special.
Varnish uses the first backend you specify as default. You can specify many backends at the same
time, but for now, we will only specify one to get started.

Tip

You can also add and edit your VCL code via the Varnish Administration Console (VAC). This
interface also allows you to administrate your VCL files.

Figure 6: GUI of Varnish Administration Console (VAC) with command line interface to edit your
VCL code.

Page 48 Chapter 3 Getting Started

3.8 Exercise: Use the administration interface to learn, review
and set Varnish parameters

1. Use param.show and param.set from varnishadm to see and set the value of
default_ttl and default_grace

2. Refer to Figure 2 to see the object's timeline

Parameters can also be set in varnishtest as explained in Setting Parameters in varnishtest. You
will learn more about how to tune parameters in the Tunable Parameters section.

Chapter 3 Getting Started Page 49

3.9 Exercise: Fetch Data Through Varnish

• Execute http -p hH http://localhost/ on the command line

• Pay attention to the Age response header field

• Compare and discuss the results from multiple executions

-p hH specifies HTTPie to print only request and response headers, but not the content. The typical
HTTP response is "200 OK" or "404 File not found". Feel free to try removing some of the options and
observe the effect. For more information about the HTTPie command, type man http.

Testing Varnish with a web browser can be confusing, because web browsers have their own cache.
Therefore, it is useful to double-check web browsers requests with HTTPie or varnishtest as
explained in Fetch Data with varnishtest. For more information about the Age response header field
refer to the Age subsection.

Page 50 Chapter 3 Getting Started

4 Examining Varnish Server's Output
In this chapter you will learn about:

• log records,

• statistics out from global counters and the Varnish log,

• the log layout,

• transactions,

• the query language, and

• notable counters.

Varnish logs information of requests, caches and responses to The Varnish Shared memory Log
(VSL). Logs are available through Varnish tools with a short delay, but usually not noticeable. The VSL
is overwritten when filled-up in circular order.

The memory log overwriting has two effects. On the one hand, there is no historic data, but on the
other hand, there is an abundance of information accessible at a very high speed. Still, you can
instruct Varnish to store logs in files.

Varnish generates very large amounts of data, therefore it does not write logs to disk by default, but
only to memory. However, if you need to enable logging to disk, as when debugging a crashing
Varnish installation, you set VARNISHNCSA_ENABLED=1 or VARNISHNCSA_ENABLED=1 in
/etc/default/varnishlog or /etc/default/varnishncsa respectively. Table 3 shows the
location of the configuration file based on different platforms.

Varnish provides specific tools to parse the content of logs: varnishlog, varnishncsa,
varnishstat, and varnishstat among others. varnishlog and varnishstat are the two
most common used tools.

Tip

All utility programs have installed reference manuals. Use the man command to retrieve their
manual pages.

Chapter 4 Examining Varnish Server's Output Page 51

4.1 Log Data Tools
Tools to display detailed log records:

• varnishlog is used to access request-specific data. It provides information about specific
clients and requests.

• varnishncsa displays Varnish access logs in NCSA Common log format.

• varnishtest allows you to display log records and counters from your tests.

Statistical tools:

• varnishstat is used to access global counters.

• varnishtop reads the Varnish log and presents a continuously updated list of the most
commonly occurring log entries.

• varnishhist reads the Varnish log and presents a continuously updated histogram showing
the distribution of the last N requests by their processing.

If you have multiple Varnish instances running in the same machine, you need to specify
-n <name> both when starting Varnish and when using the tools. This option is used to specify the
instance of varnishd, or the location of the shared memory log. All tools (including varnishadm)
can also take a -n option.

In this course, we focus on the two most important tools: varnishlog and varnishstat. Unlike all
other tools, varnishstat does not read entries from the Varnish log, but from global counters. You
can find more details about the other Varnish tools varnishncsa, varnishtop and varnishhist
in Appendix B: Varnish Programs.

Page 52 Chapter 4 Examining Varnish Server's Output

4.2 Log Layout

Figure 7: Log Layout Timeline

Varnish logs transactions chronologically as Figure 7 shows. The varnishlog is one of the most
used tools and offers mechanisms to reorder transactions grouped by TCP session, frontend- or
backend worker. We talk more on transactions in the next subsection.

The various arguments of varnishlog are mostly designed to help you find exactly what you want,
and filter out the noise. On production traffic, the amount of log data that Varnish produces is
staggering, and filtering is a requirement for using varnishlog effectively. Next section explains
transactions and how to reorder them.

varnishtest starts a real varnishd process for each test, therefore it also logs in VSL. When your
Varnish test fails or you run varnishtest in verbose mode, you can see the vsl entry for each
Varnish log record. You can also use the logexpect to assert the expected behavior in your tests.

Chapter 4 Examining Varnish Server's Output Page 53

4.3 Transactions

$ varnishlog -d

Note

The -d option of varnishlog makes it output all existing records in the shared memory log
(VSL) instead of showing live transactions. The same parameter is also available for
varnishncsa.

Figure 8: VXIDs in Log Layout

A transaction is one work item in Varnish and it is a set of log lines that belong together, e.g., a client
request or a backend request. Varnish Transaction IDs (VXIDs) are applied to lots of different kinds of
work items. A unique VXID is assigned to each type of transaction. The 0 VXID is reserved for
everything that Varnish does but not part of a specific transaction. You can follow the VXID when you
analyze the log through varnishlog or varnishtest.

Transaction types are:

• session: TCP session

• request: Transaction handled by the frontend- or backend worker

Varnish logs are grouped by VXID by default. For example, when viewing a log for a simple cache
miss, you see logs in the order they end. That is: 1) backend request (BeReq), 2) client request
(Request) and 3) session (Session).

Each transaction has a reason, for examples:

• Client request

Page 54 Chapter 4 Examining Varnish Server's Output

• ESI request

• restart

• fetch

To learn more about this topic in varnishtest, refer to the section: Example of Transactions in
varnishtest.

Chapter 4 Examining Varnish Server's Output Page 55

4.3.1 Transaction Groups

• -g <session | request | vxid | raw> groups together transactions in varnishlog and
varnishtest

• Transaction groups are hierarchical

• Levels are equal to relationships (parents and children):

Level 1: Client request (cache miss)
 Level 2: Backend request
 Level 2: ESI subrequest (cache miss)
 Level 3: Backend request
 Level 3: Backend request (VCL restart)
 Level 3: ESI subrequest (cache miss)
 Level 4: Backend request
 Level 2: ESI subrequest (cache hit)

When grouping transactions, there is a hierarchy structure showing which transaction initiated what.
In client request grouping mode, the various work items are logged together with their originating
client request. For example, a client request that triggers a backend request might trigger two more
ESI subrequests, which in turn might trigger yet another ESI subrequest.

All these requests together with the client response are arranged in the order they are initiated. This
arrangement is easier to grasp than when grouping by VXID. The Content Composition section
shows how to analyze the log for Edge Side Includes (ESI) transactions.

When a subrequest occurs in the log, the subrequest tells us about the relationship to its parent
request through the Link statement. This statement contains the VXID of the parent request.
varnishlog indents its output based on the level of the request, making it easier to see the level of
the current request.

Page 56 Chapter 4 Examining Varnish Server's Output

4.3.2 Example of Transaction Grouping with varnishlog

$ varnishlog -g request -i Begin,Link -d

Figure 9: Example of Transaction Grouping with varnishlog

Figure 9 shows a client request in a cache miss scenario. In the figure, varnishlog returns records
grouped by request. For simplicity, we use the -i option to include only the Begin and Link tags.

For more information about the format and content of all Varnish shared memory logging (VSL) tags,
see the VSL man page by typing man vsl. The workflow of Varnish is detailed in the VCL Basics
chapter.

To reproduce the example, issue http -p hH http://localhost/, and then the varnishlog
command as above. The -d option processes all recorded entries in Varnish log. To learn more
about the available varnishlog options, enter varnishlog -h or see the varnishlog man
page.

varnishlog accepts all options that are syntactically correct. The output, however, might be
different from your first interpretation. Therefore, you should make sure that your results make
sense.

Options -b and -c display only transactions coming from the backend and client communication
respectively. You can verify the meaning of your results by double checking the filters, and
separating your results with the -b and -c options.

Note

The logexpect command from varnishtest accepts the same arguments as varnishlog.

Chapter 4 Examining Varnish Server's Output Page 57

4.4 Query Language

• Operates on transaction groups.

• Query expression is true if it matches one or more records, false otherwise.

• Supports:

• string matching, e.g.: RespProtocol eq "HTTP/1.1"

• regex, e.g.: ReqMethod ~ "GET|POST"

• integer and float matching, e.g.: RespStatus == 200

• boolean operators, e.g.: RespStatus >= 500 and RespStatus < 600

• parenthesis hierarchy

• Operators: == != < <= > >= eq ne ~ !~

• Operands: a-z A-Z 0-9 + - _ . *

Examples of Varnish log queries:

varnishlog -q 'RespStatus < 500'
varnishlog -g request -q 'ReqURL eq "/"'
varnishlog -g request -q 'Backend ~ default'

The -q option allows you to add a query to varnishlog. Think of it as a sort of select filter for
varnishlog. It works together with the grouping so that if the query matches some part of any of
the work items in the transaction group, the whole group matches and gets displayed.

Query expressions can be combined using boolean functions. In addition, there are many output
control options, such as -i taglist. These options are output filters, thus they do not affect
transaction matching. Output controls are applied last.

A query expression consists of record selection criteria, and optionally an operator and a value to
match against the selected records:

<record selection criteria> <operator> <operand>

The <record selection criteria> determines what kind of records from the transaction group
the expression applies to. The syntax is:

{level}taglist:record-prefix[field]

For example:

• Response time exceeds 1⁄2 second Timestamp:Process[2] > 0.5

• Client requests connection closed ReqHeader:connection ~ close

• ESI miss (-g request) {3+}Begin ~ Bereq

Page 58 Chapter 4 Examining Varnish Server's Output

Taglists are not case-sensitive, but we recommend you to follow the same format as declared in
man vsl.

The grouping and the query log processing all happens in the varnishlog API. This means that
other programs using this API automatically get grouping and query language. For example,
logexpect as we shall see next.

Tip

man vsl-query shows you more details about query expressions. man vsl lists all taglists
and their syntax.

Chapter 4 Examining Varnish Server's Output Page 59

4.5 Exercise: Filter Varnish Log Records

• Provoke Varnish to get the Service Unavailable (RespStatus == 503) response from the
backend

• Use varnishlog to filter and print only this error

There are multiple ways to provoke your backend fail. For example, misconfigure your backend in
Varnish or stop your backend.

You can filter and print specific messages from the varnishlog in many ways. The purpose of this
exercise is to use the query option -q, but you can also use the include tags option -i or -I and
the grep command.

Note

You can also use varnishtest to provoke a Service Unavailable response and assert it by
reading VSL with logexpect.

Page 60 Chapter 4 Examining Varnish Server's Output

4.6 varnishstat

Uptime mgt: 1+23:38:08 Hitrate n: 10 100 438
Uptime child: 1+23:38:08 avg(n): 0.9967 0.5686 0.3870

NAME CURRENT CHANGE AVERAGE AVG_10 AVG_100 AVG_1000
MAIN.uptime 171488 1.00 1.00 1.00 1.00 1.00
MAIN.sess_conn 1055 7.98 . 8.35 4.49 2.11
MAIN.client_req 1055 7.98 . 8.35 4.49 2.11
MAIN.cache_hit 1052 7.98 . 8.35 4.49 2.10
MAIN.cache_miss 3 0.00 . 0.00 0.00 0.00
MAIN.backend_conn 4 0.00 . 0.00 0.00 0.01
MAIN.backend_toolate 3 0.00 . 0.00 0.00 0.01
MAIN.backend_recycle 4 0.00 . 0.00 0.00 0.01
MAIN.fetch_length 4 0.00 . 0.00 0.00 0.01
MAIN.pools 2 0.00 . 2.00 2.00 2.00
MAIN.threads 200 0.00 . 200.00 200.00 200.00
MAIN.threads_created 200 0.00 . 0.00 0.00 0.00
MAIN.n_object 1 0.00 . 1.00 0.85 0.81
MAIN.n_objectcore 3 0.00 . 3.00 2.85 2.81
MAIN.n_objecthead 4 0.00 . 4.00 3.89 3.83
MAIN.n_backend 1 0.00 . 1.00 1.00 1.00
MAIN.n_expired 2 0.00 . 2.00 1.76 1.33
MAIN.s_sess 1055 7.98 . 8.35 4.49 2.11
MAIN.s_req 1055 7.98 . 8.35 4.49 2.11
MAIN.s_fetch 3 0.00 . 0.00 0.00 0.00
MAIN.s_req_hdrbytes 122380 926.07 . 968.24 520.74 244.35
MAIN.s_resp_hdrbytes 376249 2854.04 2.00 2982.17 1602.59 751.87
MAIN.s_resp_bodybytes 3435094 25993.71 20.00 27177.59 14616.67 6858.74
MAIN.backend_req 4 0.00 . 0.00 0.00 0.01
MAIN.n_vcl 1 0.00 . 0.00 0.00 0.00
MAIN.bans 1 0.00 . 1.00 1.00 1.00
MAIN.n_gunzip 4 0.00 . 0.00 0.00 0.01
MGT.uptime 171488 1.00 1.00 1.00 1.00 1.00
SMA.s0.c_req 8 0.00 . 0.00 0.01 0.01
SMA.s0.c_bytes 15968 0.00 . 0.01 18.98 27.33
SMA.s0.c_freed 11976 0.00 . 0.00 12.17 18.56
SMA.s0.g_alloc 2 0.00 . 2.00 1.70 1.62
SMA.s0.g_bytes 3992 0.00 . 3991.87 3398.82 3235.53
SMA.s0.g_space 268431464 0.00 . 268431464.13 268432057.18 268432220.47
VBE.default(127.0.0.1,,8080).bereq_hdrbytes 630 0.00 . 0.00 0.70 1.13
VBE.default(127.0.0.1,,8080).beresp_hdrbytes 1128 0.00 . 0.00 1.34 1.93
VBE.default(127.0.0.1,,8080).beresp_bodybytes 13024 0.00 . 0.01 15.48 22.29

MAIN.cache_hit INFO
Cache hits:
Count of cache hits. A cache hit indicates that an object has been delivered to a client without fetching it from a
backend server.

Chapter 4 Examining Varnish Server's Output Page 61

Table 7: Columns displayed in central area of varnishstat

Column Description

Name The name of the counter

Current The current value of the counter.

Change The average per second change over the last update interval.

Average The average value of this counter over the runtime of the Varnish daemon, or a
period if the counter can't be averaged.

Avg_10 The moving average over the last 10 update intervals.

Avg_100 The moving average over the last 100 update intervals.

Avg_1000 The moving average over the last 1000 update intervals.

varnishstat looks only at counters. These counters are easily found in VSL, and are typically polled
at reasonable interval to give the impression of real-time updates. Counters, unlike the rest of the
log, are not directly mapped to a single request, but represent how many times a specific action has
occurred since Varnish started.

varnishstat gives a good representation of the general health of Varnish. Unlike all other tools,
varnishstat does not read log entries, but counters that Varnish updates in real-time. It can be
used to determine your request rate, memory usage, thread usage, number of failed backend
connections, and more. varnishstat gives you information just about anything that is not related
to a specific request.

There are over a hundred different counters available. To increase the usefulness of varnishstat,
only counters with a value different from 0 is shown by default.

varnishstat can be used interactively, or it can display the current values of all the counters with
the -1 option. Both methods allow you to specify specific counters using
-f field1 -f field2 .. to limit the list.

In interactive mode, varnishstat has three areas. The top area shows process uptime and hitrate
information. The center area shows a list of counter values. The bottom area shows the description
of the currently selected counter.

Hitrate n and avg(n) are related, where n is the number intervals. avg(n) measures the cache hit rate
within n intervals. The default interval time is one second. You can configure the interval time with
the -w option.

Since there is no historical data of counters changes, varnishstat has to compute the average
while it is running. Therefore, when you start varnishstat, Hitrate values start at 1, then they
increase to 10, 100 and 1000. In the example above, the interval is one second. The hitrate average
avg(n) show data for the last 10, 100, and 438 seconds. The average hitrate is 0.9967 (or 99.67%) for
the last 10 seconds, 0.5686 for the last 100 seconds and 0.3870 for the last 438 seconds.

In the above example Varnish has served 1055 requests and is currently serving roughly 7.98
requests per second. Some counters do not have "per interval" data, but are gauges with values that
increase and decrease. Gauges normally start with a g_ prefix.

Page 62 Chapter 4 Examining Varnish Server's Output

Tip

You can also see many parameters in real-time graphs with the Varnish Administration
Console (VAC).

Figure 10: Cache Hit Meter

Figure 11: Hit vs Miss vs Hit for Pass

Figure 12: Req/sec, and Hit/sec

Chapter 4 Examining Varnish Server's Output Page 63

Figure 13: Real Time Counters

Tip

If you need to collect statistics from more than a single Varnish server, Varnish Custom
Statistics (VCS) allows you to do that. In addition, VCS allows you to define your metrics to
collect and analyze aggregated statistics, for example:

• A/B testing

• Measuring click-through rate

• Track slow pages and cache misses

• Analyze what is "hot" right now in a news website

• Track changes in currency conversions in e-commerce

• Track changes in Stock Keeping Units (SKUs) behavior in e-commerce

• Track number of unique consumers of HLS/HDS/DASH video streams

Page 64 Chapter 4 Examining Varnish Server's Output

4.6.1 Notable Counters

Table 8: Notable counters in varnishstat

Counter Description

MAIN.cache_hit Indicates the number of objects delivered to clients without fetching
them from the backend

MAIN.cache_hitpass Counts how many times the hit-for-pass object has been hit, i.e.,
Varnish passes the request to the backend.

MAIN.cache_miss Shows how many requested objects were fetched from the backend

MAIN.client_req Number of parseable client requests received

MAIN.threads_limited Counts how many times varnishd hits the maximum allowed number
of threads. The maximum number of Varnish threads is given by the
parameter thread_pool_max. Issue the command
varnishadm param.show thread_pool_max to see this
parameter.

MAIN.threads_failed Increases every time pthread_create() fails. You can avoid this
situation by tuning the maximum number of processes available with
the ulimit -u command. You may also look at the thread-max
Linux parameter in /proc/sys/kernel/threads-max.

MAIN.thread_queue_len Shows the current number of sessions waiting for a thread. This
counter is first introduced in Varnish 4.

MAIN.sess_queued Contains the number of sessions that are queued because there are no
available threads immediately. Consider to increase the
thread_pool_min parameter.

MAIN.sess_dropped Counts how many times sessions are dropped because varnishd
hits the maximum thread queue length. You may consider to increase
the thread_queue_limit Varnish parameter as a solution to drop
less sessions.

MAIN.n_lru_nuked Number of least recently used (LRU) objects thrown out to make room
for new objects. If this is zero, there is no reason to enlarge your cache.
Otherwise, your cache is evicting objects due to space constraints. In
this case, consider increasing the size of your cache.

MAIN.n_object Number of cached objects

Varnish provides a large number of counters for information and debugging purposes. Table 8
presents counters that are typically important. Other counters may be relevant only for Varnish
developers when providing support.

Counters also provide feedback to Varnish developers on how Varnish works in production
environments. This feedback in turn allows Varnish to be developed according to its real usage. Issue
varnishstat -1 to list all counters with their current values.

Chapter 4 Examining Varnish Server's Output Page 65

Note

If you have many backends, consider to increase the size of the shared memory log. For that,
see the option -l in the man page of varnishd.

Tip

Remember that Varnish provides many reference manuals. To see all Varnish counter field
definitions, issue man varnish-counters.

Page 66 Chapter 4 Examining Varnish Server's Output

4.7 Exercise: Try varnishstat and varnishlog together

• Run varnishstat and varnishlog while performing a few requests.

• See, analyze and understand how counters and parameters change in varnishstat and
varnishlog.

Counters are also accessible from varnishtest. If you are done with this exercise and have still
time, try to assert some counters as described in Exercise: Assert Counters in varnishtest.

Chapter 4 Examining Varnish Server's Output Page 67

5 Tuning
This chapter is for the system administration course only

This section covers:

• Architecture

• Best practices

• Parameters

Perhaps the most important aspect of tuning Varnish is writing effective VCL code. For now, however,
we will focus on tuning Varnish for your hardware, operating system and network. To be able to do
that, knowledge of Varnish architecture is helpful.

It is important to know the internal architecture of Varnish for two reasons. First, the architecture is
chiefly responsible for the performance, and second, it influences how you integrate Varnish in your
own architecture.

There are several aspects of the design that were unique to Varnish when it was originally
implemented. Truly good solutions, regardless of reusing ancient ideas or coming up with something
radically different, is the aim of Varnish.

Page 68 Chapter 5 Tuning

5.1 Varnish Architecture

Figure 14: Varnish Architecture

Figure 14 shows a block diagram of the Varnish architecture. The diagram shows the data flow
between the principal parts of Varnish.

The main block is the Manager process, which is contained in the varnishd binary program. The
task of the Manager process is to delegate tasks, including caching, to child processes. The Manager
process ensures that there is always a process for each task. The main driver for these design
decisions is security, which is explain at Security barriers in Varnish
https://www.varnish-cache.org/docs/trunk/phk/barriers.html.

The Manager's command line interface (CLI) is accessible through: 1) varnishadm as explained in
The Management Interface varnishadm section, 2) the Varnish Agent vagent2, or 3) the Varnish
Administration Console (VAC) (via vagent2)

The Varnish Agent vagent2 is an open source HTTP REST interface that exposes varnishd services
to allow remote control and monitoring. vagent2 offers a web UI as shown in Figure 15, but you can
write your own UI since vagent2 is an open interface. Some features of vagent2 are:

• VCL uploading, downloading, persisting (storing to disk).

• parameter viewing, storing (not persisting yet)

• show/clear of panic messages

• start/stop/status of varnishd

• banning

• varnishstat in JSON format

Chapter 5 Tuning Page 69

https://www.varnish-cache.org/docs/trunk/phk/barriers.html

Figure 15: Varnish Agent's HTML interface; designed to showcase the various features of the Varnish
Agent.

For more information about vagent2 and installation instructions, please visit
https://github.com/varnish/vagent2.

Varnish Software has a commercial offering of a fully functional web UI called Varnish Administration
Console (VAC). For more information about VAC, refer to the Varnish Administration Console (VAC)
section.

Page 70 Chapter 5 Tuning

https://github.com/varnish/vagent2

5.1.1 The Parent Process: The Manager
The Manager process is owned by the root user, and its main functions are:

• apply configuration changes (from VCL files and parameters)

• delegate tasks to child processes: the Cacher and the VCL to C Compiler (VCC)

• monitor Varnish

• provide a Varnish command line interface (CLI)

• initialize the child process: the Cacher

The Manager checks every few seconds whether the Cacher is still there. If the Manager does not get
a reply within a given interval defined in ping_interval, the Manager kills the Cacher and starts it
up again. This automatic restart also happens if the Cacher exits unexpectedly, for example, from a
segmentation fault or assert error. You can ping manually the cacher by executing
varnishadm ping.

Automatic restart of child processes is a resilience property of Varnish. This property ensures that
even if Varnish contains a critical bug that crashes the child, the child starts up again usually within a
few seconds. You can toggle this property using the auto_restart parameter.

Note

Even if you do not perceive a lengthy service downtime, you should check whether the
Varnish child is being restarted. This is important, because child restarts introduce extra
loading time as varnishd is constantly emptying its cache. Automatic restarts are logged
into /var/log/syslog.

To verify that the child process is not being restarted, you can also check its lifetime with the
MAIN.uptime counter in varnishstat.

Varnish Software and the Varnish community at large occasionally get requests for assistance
in performance tuning Varnish that turn out to be crash-issues.

Chapter 5 Tuning Page 71

5.1.2 The Child Process: The Cacher
Since the Cacher listens on public IP addresses and known ports, it is exposed to evil clients.
Therefore, for security reasons, this child process is owned by an unprivileged user, and it has no
backwards communication to its parent, the Manager.

The main functions of the Cacher are:

• listen to client requests

• manage worker threads

• store caches

• log traffic

• update counters for statistics

Varnish uses workspaces to reduce the contention between each thread when they need to acquire
or modify memory. There are multiple workspaces, but the most important one is the session
workspace, which is used to manipulate session data. An example is changing www.example.com to
example.com before it is entered into the cache, to reduce the number of duplicates.

It is important to remember that even if you have 5 MB of session workspace and are using 1000
threads, the actual memory usage is not 5 GB. The virtual memory usage will indeed be 5GB, but
unless you actually use the memory, this is not a problem. Your memory controller and operating
system will keep track of what you actually use.

To communicate with the rest of the system, the child process uses the VSL accessible from the file
system. This means that if a thread needs to log something, all it has to do is to grab a lock, write to a
memory area and then free the lock. In addition to that, each worker thread has a cache for log-data
to reduce lock contention. We will discuss more about the Threading Model later in this chapter.

The log file is usually about 80MB, and split in two. The first part is counters, the second part is
request data. To view the actual data, a number of tools exist that parses the VSL.

Since the log-data is not meant to be written to disk in its raw form, Varnish can afford to be very
verbose. You then use one of the log-parsing tools to extract the piece of information you want --
either to store it permanently or to monitor Varnish in real-time.

If something goes wrong in the Cacher, it logs a detailed panic message to syslog. For testing, you
can induce panic to varnishd by issuing the command varnishadm debug.panic.worker or by
pressing the Induce Panic button in the Varnish Agent web interface.

Page 72 Chapter 5 Tuning

5.1.3 VCL Compilation

• Command to print VCL code compiled to C language and exit:

$varnishd -C -f <vcl_filename>

• Useful to check whether your VCL code compiles correctly.

Configuring the caching policies of Varnish is done in the Varnish Configuration Language (VCL). Your
VCL is then translated by the VCC process to C, which is compiled by a normal C compiler – typically
gcc, and linked into the running Varnish instance. Since the VCL compilation is done outside of the
child process, there is no risk of affecting the running Varnish instance by accidentally loading an
ill-formatted VCL.

As a result, changing configuration while running Varnish is very cheap. Policies of the new VCL takes
effect immediately. However, objects cached with an older configuration may persist until they have
no more old references or the new configuration acts on them.

A compiled VCL file is kept around until you restart Varnish completely, or until you issue
vcl.discard from the management interface. You can only discard compiled VCL files after all
references to them are gone. You can see the amount of VCL references by reading the parameter
vcl.list.

Chapter 5 Tuning Page 73

5.2 Storage Backends

• The storage option -s defines the size of your cache and where it is stored

• Use varnishd -s followed by one of the following methods to allocate space for the cache:

• malloc

• file

• persistent (deprecated)

• mse Varnish Massive Storage Engine (MSE) in Varnish Plus only

The -s <malloc[,size]> option calls malloc() to allocate memory space for every object that
goes into the cache. If the allocated space cannot fit in memory, the operating system automatically
swaps the needed space to disk.

Varnish uses the jemalloc implementation. Although jemalloc emphasizes fragmentation avoidance,
fragmentation still occurs. Jemalloc worst case of memory fragmentation is 20%, therefore, expect
up to this percentage of additional memory usage. In addition to memory fragmentation you should
consider an additional 5% overhead as described later in this section.

Another option is -s <file,path[,size[,granularity]]>. This option creates a file on a
filesystem to contain the entire cache. Then, the operating system maps the entire file into memory
if possible.

The -s file storage method does not retain data when you stop or restart Varnish! For
persistence, use the option -s persistent. The usage of this option, however, is strongly
discouraged mainly because of consistency issues that might arise with it.

The Varnish Massive Storage Engine (MSE) option -s <mse,path[,path...]]> is an improved
storage method for Varnish Plus only. MSE main improvements are decreased disk I/O load and
lower storage fragmentation. MSE is designed to store and handle over 100 TB with persistence,
which makes it very useful for video on demand setups.

MSE uses a hybrid of two cache algorithms, least recently used (LRU) and least frequently used (LFU),
to manage memory. Benchmarks show that this algorithm outperforms malloc and file. MSE also
implements a mechanism to eliminate internal fragmentation.

The latest version of MSE requires a bookkeeping file. Caches in the order of gigabytes require a
bookkeeping file of around 1% of the storage size. Caches in the order of terabytes should have a
bookkeeping file size around 0.5% of storage size.

For detailed instructions on how to configure MSE, please refer to the Varnish Plus documentation.
For more details about its features and previous versions, please visit
https://info.varnish-software.com/blog/varnish-mse-persistence.

When choosing storage backend, use malloc if your cache will be contained entirely or mostly in
memory. If your cache will exceed the available physical memory, you have two options: file or
mse. We recommend you to use MSE because it performs much better than file storage backend.

There is a storage overhead in Varnish, so the actual memory footprint of Varnish exceeds what the
-s argument specifies if the cache is full. The current estimated overhead is 1kB per object. For 1

Page 74 Chapter 5 Tuning

https://info.varnish-software.com/blog/varnish-mse-persistence

million objects, that means 1GB extra memory usage. This estimate might slightly vary between
Varnish versions.

In addition to the overhead per object, Varnish requires memory to manage the cache and handle its
own operation. Our tests show that an estimate of 5% of overhead is accurate enough. This
overhead applies equally to malloc, file or mse options.

For more details about memory usage in Varnish, please refer to
https://info.varnish-software.com/blog/understanding-varnish-cache-memory-usage.

Note

As a rule of thumb use: malloc if the space you want to allocate fits in memory, if not, use
file or mse. Remember that there is about 5% memory overhead and do not forget to
consider the memory needed for fragmentation in malloc or the disk space for the
bookkeeping file in mse.

Chapter 5 Tuning Page 75

https://info.varnish-software.com/blog/understanding-varnish-cache-memory-usage

5.3 The Varnish Shared memory Log (VSL)

• Avoid I/O operations

• Mount the shared memory log as tmpfs

• VSL is not persistent

The Varnish Shared memory Log (VSL), sometimes called shm-log or SHMLOG, is used to log most
data. VSL operates on a circular buffer. Therefore, there is no a start or an end of it, but you can
issue varnishlog -d to see old log entries.

VSL is 80MB large by default, which gives a certain history, but it is not persistent unless you instruct
Varnish to do otherwise. To change the size of the VSL, see the option -l in the man page of
varnishd.

There is not much you have to do with the VSL, except ensure that it does not cause I/O operations.
You can avoid I/O by mounting the VSL as a temporary file storage (tmpfs). This is typically configured
in /etc/fstab, and the shm-log is normally kept under /var/lib/varnish/ or equivalent
locations. You need to restart varnishd after mounting it as tmpfs.

VSL is not persistent, i.e., all its data is in memory. This memory space is mapped under
/var/lib/varnish/.

Warning

Some Varnish distribution setup the file storage backend option -s file by default. Those
distribution set a path that puts the storage file in the same directory as the shm-log. We
discourage this practice.

Page 76 Chapter 5 Tuning

5.4 Tunable Parameters

• In the CLI:

param.show -l

• Do not fall for the copy/paste tips

• Test the parameters in CLI, then store them in the configuration file

Varnish has many different parameters which can be adjusted to make Varnish act better under
specific workloads or with specific software and hardware setups. They can all be viewed with
param.show in the management interface varnishadm.

You can set up parameters in two different ways. In varnishadm, use the command
param.set <param> <value>. Alternatively, you can issue the command
varnishd -p param=value.

Remember that changes made in the management interface are not persistent. Therefore, unless
you store your changes in a startup script, they will be lost when Varnish restarts.

The general advice with regards to parameters is to keep it simple. Most of the defaults are optimal.
If you do not have a very specific need, it is generally better to use the default values.

A few debug commands exist in the CLI, which can be revealed with help -d. These commands are
meant exclusively for development or testing, and many of them are downright dangerous.

Tip

Parameters can also be configured via the Varnish Administration Console (VAC) as shown in
the figure below.

Chapter 5 Tuning Page 77

Figure 16: GUI to configure parameters via the Varnish Administration Console (VAC).

Page 78 Chapter 5 Tuning

5.5 Varnish Tuner

• Command varnishtuner

• Suggested values for system variables and Varnish parameters are installation specific

• With our without user input

• Available for Varnish Plus only

The biggest potential for improvement is outside Varnish. First and foremost in tuning the network
stack and the TCP/IP connection handling.

Varnish Tuner is a program toolkit based on the experience and documentation we have built. The
toolkit tries to gather as much information as possible from your installation and decides which
parameters need tuning.

The tuning advice that the toolkit gives is specific to that system. The Varnish Tuner gathers
information from the system it is running in. Based on that information, it suggests values for
systems variables of your OS and parameters for your Varnish installation that can be beneficial to
tune. Varnish Tuner includes the following information for each suggested system variable or
parameter:

• current value

• suggested value

• text explaining why it is advised to be changed

varnishtuner requires by default user input to produce its output. If you are not sure about the
requested input, you can instruct varnishtuner to do not suggest parameters that require user
input. For this, you issue varnishtuner -n.

Varnish Tuner is valuable to both experts and non-experts. Varnish Tuner is available for Varnish
Plus series only.

Warning

Copying Varnish Tuner suggestions to other systems might not be a good idea.

Chapter 5 Tuning Page 79

5.5.1 Varnish Tuner Persistence
The output of varnishtuner updates every time you introduce a new input or execute a suggested
command. However, the result of the suggested commands are not necessarily persistent, which
means that they do not survive a reboot or restart of Varnish Cache. To make the tuning persistent,
you can add do the following:

• Specify the Varnish parameters in the configuration file.

• Specify the sysctl system variables in /etc/sysctl.conf or in
/etc/sysctl.d/varnishtuner.conf (if /etc/sysctl.d/ is included).

To see the usage documentation of Varnish Tuner, execute: varnishtuner --help.

Page 80 Chapter 5 Tuning

5.5.2 Install Varnish Tuner
Ubuntu Trusty 14.04

Packages in our repositories are signed and distributed via https. You need to enable https support
in the package manager and install our public key first:

apt-get install -y apt-transport-https
curl https://<username>:<password>@repo.varnish-software.com/GPG-key.txt |
apt-key add -

You add the Varnish Plus repository o /etc/apt/sources.list.d/varnish-plus.list:

Varnish Tuner
deb https://<username>:<password>@repo.varnish-software.com/ubuntu
<distribution_codename> non-free

Where <distribution_codename> is the codename of your Linux distribution, for example:
trusty, debian, or wheezy.

Then:

apt-get update
apt-get install varnishtuner

Above are the installation instructions for Ubuntu to get Varnish Tuner from our repositories.
Replace the <username> and <password> with the ones of your Varnish Plus subscription. If you
do not know them, please send an email to our support email to recover them.

Red Hat Enterprise Linux 6

To install Varnish Plus on RHEL6, put the following lines into
/etc/yum.repos.d/varnish-plus.repo:

[varnishtuner]
name=Varnishtuner
baseurl=https://<username>:<password>@repo.varnish-software.com/redhat/ \
varnishtuner/el6
enabled=1
gpgcheck=0

Chapter 5 Tuning Page 81

5.6 Threading Model

• The child process runs multiple threads in two thread pools

• Threads accept new connections and delegate them

• One worker threads per client request – it's common to use hundreds of worker threads

• Expire-threads evict old content from the cache

Table 9: Relevant threads in Varnish

Thread-name Amount of threads Task

cache-worker 1 per active connection Handle requests

cache-main 1 Startup

ban lurker 1 Clean bans

acceptor 1 Accept new connections

epoll/kqueue Configurable, default: 2 Manage thread pools

expire 1 Remove old content

backend poll 1 per backend poll Health checks

The child process runs multiple threads in two thread pools. The threads of these pools are called
worker threads. Table 9 presents relevant threads.

Page 82 Chapter 5 Tuning

5.7 Threading Parameters

• Thread pools can safely be ignored

• Start threads better sooner than later

• Maximum and minimum values are per thread pool

Table 10: Threads parameters

Parameter Default Description

thread_pool_add_delay 0.000 [seconds] Period of time to wait for subsequent thread
creation.

thread_pool_destroy_delay 1 second Added time to thread_pool_timeout.

thread_pool_fail_delay 0.200 [seconds] Period of time before retrying the creation of a
thread. This after the creation of a thread failed.

thread_pool_max 5000 [threads] Maximum number of worker threads per pool.

thread_pool_min 100 [threads] Minimum number of worker threads per pool.

thread_pool_stack 48k [bytes] Worker thread stack size.

thread_pool_timeout 300.000 [seconds] Period of time before idle threads are destroyed.

thread_pools 2 [pools] Number of worker thread pools.

thread_queue_limit 20 requests Permitted queue length per thread-pool.

thread_stats_rate 10 [requests] Maximum number of jobs a worker thread may
handle before it is forced to dump its accumulated
stats into the global counters.

workspace_thread 2k [bytes] Bytes of auxillary workspace per thread.

When tuning Varnish, think about the expected traffic. The most important thread setting is the
number of cache-worker threads. You may configure thread_pool_min and thread_pool_max.
These parameters are per thread pool.

Although Varnish threading model allows you to use multiple thread pools, we recommend you to
do not modify this parameter. Based on our experience and tests, we have seen that 2 thread pools
are enough. In other words, the performance of Varnish does not increase when adding more than 2
pools.

Note

If you run across the tuning advice that suggests to have a thread pool per CPU core, rest
assured that this is old advice. We recommend to have at most 2 thread pools, but you may
increase the number of threads per pool.

Chapter 5 Tuning Page 83

Page 84 Chapter 5 Tuning

5.7.1 Details of Threading Parameters

• Default values have proved to be sufficient in most cases

• thread_pool_min and thread_pool_max are the most common threading parameters to
tune.

• Run extra threads to avoid creating them on demand

Varnish runs one thread per session, so the maximum number of threads is equal to the number of
maximum sessions that Varnish can serve concurrently. If you seem to need more threads than the
default, it is very likely that there is something wrong in your setup. Therefore, you should
investigate elsewhere before you increase the maximum value.

You can observe if the default values are enough by looking at MAIN.sess_queued through
varnishstat. Look at the counter over time, because it is fairly static right after startup.

When tuning the number of threads, thread_pool_min and thread_pool_max are the most
important parameters. Values of these parameters are per thread pool. The thread_pools
parameter is mainly used to calculate the total number of threads. For the sake of keeping things
simple, the current best practice is to leave thread_pools at the default 2 [pools].

Varnish operates with multiple pools of threads. When a connection is accepted, the connection is
delegated to one of these thread pools. Afterwards, the thread pool either delegates the connection
request to an available thread, queue the request otherwise, or drop the connection if the queue is
full. By default, Varnish uses 2 thread pools, and this has proven sufficient for even the most busy
Varnish server.

Varnish has the ability to spawn new worker threads on demand, and remove them once the load is
reduced. This is mainly intended for traffic spikes. It's a better approach to keep a few threads idle
during regular traffic, than to run on a minimum amount of threads and constantly spawn and
destroy threads as demand changes. As long as you are on a 64-bit system, the cost of running a few
hundred threads extra is very low.

The thread_pool_min parameter defines how many threads run for each thread pool even when
there is no load. thread_pool_max defines the maximum amount of threads that could be used
per thread pool. That means that with the minimum defaults 100 [threads] and 5000 [threads] of
minimum and maximums threads per pool respectively, you have:

• at least 100 [threads] * 2 [pools] worker threads at any given time

• no more than 5000 [threads] * 2 [pools] worker threads ever

Warning

New threads use preallocated workspace, which should be enough for the required task. If
threads have not enough workspace, the child process is unable to process the task and it
terminates. To avoid this situation, evaluate your setup and consider to increase the
workspace_client or workspace_backend parameter.

Chapter 5 Tuning Page 85

5.7.2 Time Overhead per Thread Creation

• thread_pool_add_delay: Wait at least this long after creating a thread.

• thread_pool_timeout: Thread idle threshold.

• thread_pool_fail_delay: After a failed thread creation, wait at least this long before trying
to create another thread.

Varnish can use several thousand threads, and has had this capability from the very beginning.
However, not all operating system kernels were prepared to deal with this capability. Therefore the
parameter thread_pool_add_delay was added to ensure that there is a small delay between
each thread that spawns. As operating systems have matured, this has become less important and
the default value of thread_pool_add_delay has been reduced dramatically, from 20 ms to 2 ms.

There are a few, less important parameters related to thread timing. The thread_pool_timeout is
how long a thread is kept around when there is no work for it before it is removed. This only applies
if you have more threads than the minimum, and is rarely changed.

Another less important parameter is the thread_pool_fail_delay. After the operating system
fails to create a new thread, thread_pool_fail_delay defines how long to wait for a re-trial.

Page 86 Chapter 5 Tuning

5.8 System Parameters
As Varnish has matured, fewer and fewer parameters require tuning. The workspace_client and
workspace_backend are parameters that could still be relevant.

• workspace_client – incoming HTTP header workspace from the client

• workspace_backend – bytes of HTTP protocol workspace for backend HTTP req/resp

• ESI typically requires exponential growth

• Remember: it is virtual, not physical memory

Workspaces are some of the things you can change with parameters. Sometimes you may have to
increase them to avoid running out of workspace.

The workspace_client parameter states how much memory can be allocated for each HTTP
session. This space is used for tasks like string manipulation of incoming headers. The
workspace_backend parameter indicates how much memory can be allocated to modify objects
returned from the backend. After an object is modified, its exact size is allocated and the object is
stored read-only.

As most of the parameters can be left unchanged, we will not go through all of them. You can take a
look at the list of parameter by issuing varnishadm param.show -l to get information about
what they can do.

Chapter 5 Tuning Page 87

5.9 Timers

Table 11: Timers

Parameter Default Description Scope

connect_timeout 3.500 [seconds] OS/network latency Backend

first_byte_timeout 60.000 [seconds] Web page generation Backend

between_bytes_timeout 60.000 [seconds] Hiccoughs Backend

send_timeout 600.000 [seconds] Client-in-tunnel Client

timeout_idle 5.000 [seconds] keep-alive timeout Client

timeout_req 2.000 [seconds] deadline to receive a complete
request header

Client

cli_timeout 60.000 [seconds] Management thread->child Management

The timeout-parameters are generally set to pretty good defaults, but you might have to adjust them
for unusual applications. The default value of connect_timeout is 3.500 [seconds]. This value is
more than enough when having the Varnish server and the backend in the same server room.
Consider to increase the connect_timeout value if your Varnish server and backend have a higher
network latency.

Keep in mind that the session timeout affects how long sessions are kept around, which in turn
affects file descriptors left open. It is not wise to increase the session timeout without taking this into
consideration.

The cli_timeout is how long the management thread waits for the worker thread to reply before
it assumes it is dead, kills it and starts it back up. The default value seems to do the trick for most
users today.

Warning

If connect_timeout is set too high, it does not let Varnish handle errors gracefully.

Note

Another use-case for increasing connect_timeout occurs when virtual machines are
involved as they can increase the connection time significantly.

Page 88 Chapter 5 Tuning

Tip

More information in
https://www.varnish-software.com/blog/understanding-timeouts-varnish-cache.

Chapter 5 Tuning Page 89

https://www.varnish-software.com/blog/understanding-timeouts-varnish-cache

5.10 Exercise: Tune first_byte_timeout

• Delay backend responses for over 1 second

• Set first_byte_timeout to 1 second

• Check how Varnish times out the request to the backend

For the purpose of this exercise, we suggest to create a simple CGI script to insert response delay in
a real backend. To check how first_byte_timeout impacts the behavior of Varnish, analyze the
output of varnishlog and varnishstat. If you need help, look at Solution: Tune
first_byte_timeout and test it against your real backend.

Alternatively, you can use delay in a mock-up backend in varnishtest and assert VSL records
and counters to verify the effect of first_byte_timeout. The subsection Solution: Tune
first_byte_timeout and test it against mock-up server shows you how to do it.

Page 90 Chapter 5 Tuning

5.11 Exercise: Configure Threading

• Change the thread_pool_min and thread_pool_max parameters to get 10 threads running
at any given time, but never more than 15.

• Execute varnishadm param.show <parameter> to see parameter details.

These exercises are for educational purposes, and not intended as an encouragement to change the
values. You can learn from this exercise by using varnishstat, varnishadm and varnishstat

If you need help, see Solution: Configure Threading with varnishadm and varnishstat or Solution:
Configure Threading with varnishtest.

Chapter 5 Tuning Page 91

6 HTTP
This chapter is for the web-developer course only

This chapter covers:

• Protocol basics

• Requests and responses

• HTTP request/response control flow

• Statelessness and idempotence

• Cache related headers

Varnish is designed to be used with HTTP semantics. These semantics are specified in the version
called HTTP/1.1. This chapter covers the basics of HTTP as a protocol, its semantics and the caching
header fields most commonly used.

Page 92 Chapter 6 HTTP

6.1 Protocol Basics

Figure 17: HTTP request/response control flow diagram

• Hyper-Text Transfer Protocol, HTTP, is at the core of the web

• Specified by the IETF, there are two main versions: HTTP/1.1 and HTTP/2

• Varnish 4.0 supports HTTP/1.1

HTTP is a networking protocol for distributed systems. It is the foundation of data communication
for the web. The development of this standard is done by the IETF and the W3C. In 2014, RFCs 723X
were published to clarify HTTP/1.1 and they obsolete RFC 2616.

A new version of HTTP called HTTP/2 has been released under RFC 7540. HTTP/2 is an alternative to
HTTP/1.1 and does not obsolete the HTTP/1.1 message syntax. HTTP's existing semantics remain
unchanged.

The protocol allows multiple requests to be sent in serial mode over a single connection. If a client
wants to fetch resources in parallel, it must open multiple connections.

Chapter 6 HTTP Page 93

6.1.1 Resources and Representations

• Resource: target of an HTTP request

• A resource may have different representations

• Representation: a particular instantiation of a resource

• A representation may have different states: past, current and desired

Each resource is identified by a Uniform Resource Identifier (URI), as described in Section 2.7 of
[RFC7230]. A resource can be anything and such a thing can have different representations. A
representation is an instantiation of a resource. An origin server, a.k.a. backend, produces this
instantiation based on a list of request field headers, e.g., User-Agent and Accept-encoding.

When an origin server produces different representations of one resource, it includes a Vary
response header field. This response header field is used by Varnish to differentiate between
resource variations. More details on this are in the Vary subsection.

An origin server might include metadata to reflect the state of a representation. This metadata is
contained in the validator header fields ETag and Last-Modified.

In order to construct a response for a client request, an algorithm is used to evaluate and select one
representation with a particular state. This algorithm is implemented in Varnish and you can
customize it in your VCL code. Once a representation is selected, the payload for a 200 (OK) or 304
(Not Modified) response can be constructed.

Page 94 Chapter 6 HTTP

6.1.2 Requests and Responses

• A request is a message from a client to a server that includes the method to be applied to a
requested resource, the identifier of the resource, the protocol version in use and an optional
message body

• A method is a token that indicates the method to be performed on a URI

• Standard request methods are: GET, POST, HEAD, OPTIONS, PUT, DELETE, TRACE, or CONNECT

• Examples of URIs are /img/image.png or /index.html

• Header fields are allowed in requests and responses

• Header fields allow client and servers to pass additional information

• A response is a message from a server to a client that consists of a response status, headers
and an optional message body

The first line of a request message is called Request-Line, whereas the first line of a response
message is called Status-Line. The Request-Line begins with a method token, followed by the
requested resource (URI) and the protocol version.

A request method informs the web server what sort of request this is: Is the client trying to fetch a
resource (GET), update some data (POST) at the backend, or just get the headers of a resource
(HEAD)? Methods are case-sensitive.

After the Request-Line, request messages may have an arbitrary number of header fields. For
example: Accept-Language, Cookie, Host and User-Agent.

Message bodies are optional but they must comply to the requested method. For instance, a GET
request should not contain a request body, but a POST request may contain one. Similarly, a web
server cannot attach a message body to the response of a HEAD request.

The Status-Line of a response message consists of the protocol version followed by a numeric status
code and its associated textual phrase. This associated textual phrase is also called reason.
Important is to know that the reason is intended for the human user. That means that the client is
not required to examine the reason, as it may change and it should not affect the protocol. Examples
of status codes with their reasons are: 200 OK, 404 File Not Found and 304 Not Modified.

Responses also include header fields after the Status-Line, which allow the server to pass additional
information about the response. Examples of response header fields are: Age, ETag,
Cache-Control and Content-Length.

Note

Requests and responses share the same syntax for headers and message body, but some
headers are request- or response-specific.

Chapter 6 HTTP Page 95

6.1.3 Request Example

GET / HTTP/1.1
Host: localhost
User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.5; fr; rv:1.9.2.16) \
Gecko/20110319 Firefox/3.6.16
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: fr,fr-fr;q=0.8,en-us;q=0.5,en;q=0.3
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 115
Connection: keep-alive
Cache-Control: max-age=0

The above example is a typical HTTP request that includes a Request-Line, and headers, but no
message body. The Request-Line consists of the GET request for the / resource and the HTTP/1.1
version. The request includes the header fields Host, User-Agent, Accept, Accept-Language,
Accept-Encoding, Accept-Charset, Keep-Alive, Connection and Cache-Control.

Note that the Host header contains the hostname as seen by the browser. The above request was
generated by entering http://localhost/ in the browser. Most browsers automatically add a number
of headers.

Some of the headers will vary depending on the configuration and state of the client. For example,
language settings, cached content, forced refresh, etc. Whether the server honors these headers will
depend on both the server in question and the specific header.

The following is an example of an HTTP request using the POST method, which includes a message
body:

POST /accounts/ServiceLoginAuth HTTP/1.1
Host: www.google.com
User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.5; fr; rv:1.9.2.16) \
Gecko/20110319 Firefox/3.6.16
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: fr,fr-fr;q=0.8,en-us;q=0.5,en;q=0.3
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 115
Connection: keep-alive
Referer: https://www.google.com/accounts/ServiceLogin
Cookie: GoogleAccountsLocale_session=en;[...]
Content-Type: application/x-www-form-urlencoded
Content-Length: 288

ltmpl=default[...]&signIn=Sign+in&asts=

Page 96 Chapter 6 HTTP

http://localhost/

6.1.4 Response Example

HTTP/1.1 200 OK
Server: Apache/2.2.14 (Ubuntu)
X-Powered-By: PHP/5.3.2-1ubuntu4.7
Cache-Control: public, max-age=86400
Last-Modified: Mon, 04 Apr 2011 04:13:41 +0000
Expires: Sun, 11 Mar 1984 12:00:00 GMT
Vary: Cookie,Accept-Encoding
ETag: "1301890421"
Content-Type: text/html; charset=utf-8
Content-Length: 23562
Date: Mon, 04 Apr 2011 09:02:26 GMT
X-Varnish: 1886109724 1886107902
Age: 17324
Via: 1.1 varnish
Connection: keep-alive

[data]

The example above is an HTTP response that contains a Status-Line, headers and message body. The
Status-Line consists of the HTTP/1.1 version, the status code 200 and the reason OK. The response
status code informs the client (browser) whether the server understood the request and how it
replied to it. These codes are fully defined in https://tools.ietf.org/html/rfc2616#section-10, but here
is an overview of them:

• 1xx: Informational – Request received, continuing process

• 2xx: Success – The action was successfully received, understood, and accepted

• 3xx: Redirection – Further action must be taken in order to complete the request

• 4xx: Client Error – The request contains bad syntax or cannot be fulfilled

• 5xx: Server Error – The server failed to fulfill an apparently valid request

Chapter 6 HTTP Page 97

https://tools.ietf.org/html/rfc2616#section-10

6.2 HTTP Characteristics

• HTTP is a stateless protocol

• Common methods: safe, idempotent and cacheable

• Most common cacheable request methods are GET and HEAD

HTTP is by definition a stateless protocol meaning that each request message can be understood in
isolation. Hence, a server MUST NOT assume that two requests on the same connection are from the
same user agent unless the connection is secured and specific to that agent.

HTTP/1.1 persists connections by default. This is contrary to most implementations of HTTP/1.0,
where each connection is established by the client prior to the request and closed by the server after
sending the response. Therefore, for compatibility reasons, persistent connections may be explicitly
negotiated as they are not the default behavior in HTTP/1.0
[https://tools.ietf.org/html/rfc7230#appendix-A.1.2]. In practice, there is a header called
Keep-Alive you may use if you want to control the connection persistence between the client and
the server.

A method is "safe" if it is read-only; i.e., the client request does not alter any state on the server. GET,
HEAD, OPTIONS, and TRACE methods are defined to be safe. An idempotent method is such that
multiple identical requests have the same effect as a single request. PUT, DELETE and safe requests
methods are idempotent.

Cacheable methods are those that allow to store their responses for future reuse. RFC7231
specifies GET, HEAD and POST as cacheable. However, responses from POST are very rarely treated
as cacheable. [https://tools.ietf.org/html/rfc7231#section-4.2]

Page 98 Chapter 6 HTTP

https://tools.ietf.org/html/rfc7230#appendix-A.1.2
https://tools.ietf.org/html/rfc7231#section-4.2

6.3 Cache-related Headers Fields

• HTTP provides a list of headers fields to control cache behavior

• The most important caching header fields are:

• Expires

• Cache-Control

• Etag

• Last-Modified

• If-Modified-Since

• If-None-Match

• Vary

• Age

A cached object is a local store of HTTP response messages. These objects are stored, controlled,
retrieved and deleted by a subsystem, in this case Varnish. For this purpose, Varnish uses the
caching header fields defined in https://tools.ietf.org/html/rfc7232 and
https://tools.ietf.org/html/rfc7234.

If a matched cache is valid, Varnish constructs responses from caches. As a result, the origin server is
freed from creating and transmitting identical response bodies.

Chapter 6 HTTP Page 99

https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7234

6.4 Constructing Responses from Caches
When to serve a cached object?

• The cached object is properly matched: cache-hit

• The requested method and its matched object allows it

• The freshness of the cached object is acceptable

When Varnish matches a request with a cached object (aka cache-hit), it evaluates whether the cache
or origin server should be used to construct the response. There are many rules that should be
taken into consideration when validating a cache. Most of those rules use caching header fields.

This subsection describes first the concept of cache-hit and cache-miss. After that, it describes three
header fields commonly used to effectively match caches. These fields are Vary, Etag and
If-None-Match.

Page 100 Chapter 6 HTTP

6.5 Cache Matching

Figure 18: Cache-hit control flow diagram

• Cache-hits are used to reuse, update or invalidate caches

• Objects may have variants (Vary and Etag)

Figure 19: Cache-miss control flow diagram

Figure 18 shows the flow diagram of a cache-hit. A cache-hit occurs when the requested object (URI)
matches a stored HTTP response message (cache). If the matched stored message is valid to
construct a response for the client, Varnish serves construct a response and serves it without
contacting the origin server.

Figure 19 shows the flow diagram of a cache-miss. A cache-miss happens when Varnish does not
match a cache. In this case, Varnish forwards the request to the origin server.

Chapter 6 HTTP Page 101

6.5.1 Vary

• Selects a representation of a resource

• Be careful when using Vary

• Wrong usage can create a very large number of cached objects and reduce efficiency

If the origin server sends Vary in a response, Varnish does not use this response to satisfy a later
request unless the later request has the same values for the listed fields in Vary as the original
request. As a consequence, Vary expands the cache key required to match a new request to the
stored cache entry.

Vary is one of the trickiest headers to deal with when caching. A caching server like Varnish does not
necessarily understand the semantics of a header, or what part triggers different variants of a
response. In other words, an inappropriate use of Vary might create a very large number of cached
objects, and reduce the efficiency of your cache server. Therefore, you must be extremely cautious
when using Vary.

Caching objects taking into consideration all differences from requesters creates a very fine-grained
caching policy. This practice is not recommended, because those cached objects are most likely
retrieved only by their original requester. Thus, fine-grained caching strategies do not scale well. This
is a common mistake if Vary is not used carefully.

An example of wrong usage of Vary is setting Vary: User-Agent. This tells Varnish that for
absolutely any difference in User-Agent, the response from the origin server might look different.
This is not optimal because there are probably thousands of User-Agent strings out there.

Another example of bad usage is when using Vary: Cookie to differentiate a response. Again,
there could be a very large number of cookies and hence a very large number of cached objects,
which are going to be retrieved most likely only by their original requesters.

The most common usage of Vary is Vary: Accept-Encoding, which tells Varnish that the content
might look different depending on the request Accept-Encoding header. For example, a web page
can be delivered compressed or uncompressed depending on the client. For more details on how to
use Vary for compressions, refer to
https://www.varnish-cache.org/docs/trunk/users-guide/compression.html.

One way to assist Vary is by building the response body from cached and non-cached objects. We
will discuss this further in the Content Composition chapter.

Varnish Test Cases (VTC) in varnishtest can also help you to understand and isolate the behavior
of Vary. For more information about it, refer to the subsection Understanding Vary in varnishtest.

Note

Varnish can handle Accept-Encoding and Vary: Accept-Encoding, because Varnish has
support for gzip compression.

Page 102 Chapter 6 HTTP

https://www.varnish-cache.org/docs/trunk/users-guide/compression.html

6.5.2 ETag

• An Entity Tag (ETag) is metadata to differentiate between multiple states of a resource's
representation

• A differentiator key of presentations in addition to Vary

• An ETag is a validator header field

• Response header field

Origin servers normally add metadata to further describe the representation of a resource. This
metadata is used in conditional requests. "Conditional requests are HTTP requests that include one
or more header fields indicating a precondition to be tested before applying the method semantics
to the target resource" [RFC7232]. ETag is a validator header field.

The ETag header field provides a state identifier for the requested variant (resource
representation). ETags are used to differentiate between multiple states based on changes over
time of a representation. In addition, ETags are also used differentiate between multiple
representations based on content negotiation regardless their state.

Example of an ETag header:

ETag: "1edec-3e3073913b100"

The response ETag field is validated against the request If-None-Match header field. We will see
the details of If-None-Match later in this subsection, but before, we learn about the other
validator header field: Last-Modified.

Chapter 6 HTTP Page 103

6.5.3 Last-Modified

• Time-based state of presentations

• Validator header field

• Response header field

The Last-Modified response header field is a timestamp that indicates when the variant was last
modified. This headers may be used in conjunction with If-Modified-Since and
If-None-Match.

Example of a Last-Modified header:

Last-Modified: Wed, 01 Sep 2004 13:24:52 GMT

ETag and Last-Modified are validator header fields, which help to differentiate between
representations. Normally, origin servers send both fields in successful responses. Whether you use
one, another or both, depends on your use cases. Please refer to Section 2.4 in
https://tools.ietf.org/html/rfc7232#section-2.4 for a full description on when to use either of them.

Page 104 Chapter 6 HTTP

https://tools.ietf.org/html/rfc7232#section-2.4

6.5.4 If-None-Match

• Precondition Header Field

• Request header field

• Validates local caches against ETag

A client that has obtained a response message and stored it locally, may reuse the obtained ETag
value in future requests to validate its local cache against the selected cache in Varnish. The obtained
value from an ETag is sent from the client to Varnish in the request If-None-Match header field.
In fact, a client may have stored multiple resource representations and therefore a client may send
an If-None-Match field with multiple ETag values to validate.

The purpose of this header field is to reuse local caches without compromising its validity. If the local
cache is valid, Varnish replies with a 304 (Not Modified) response, which does not include a message
body. In this case, the client reuses its local cache to construct the requested resource.

Example of an If-None-Match header:

If-None-Match: "1edec-3e3073913b100"

Figure 20: If-None-Match control diagram.

Chapter 6 HTTP Page 105

6.5.5 If-Modified-Since

• Validates local caches by modification date

• Precondition Header Field

• Request header field

A request containing an If-Modified-Since header field indicates that the client wants to validate
one or more of its local caches by modification date. If the requested representation has not been
modified since the time specified in this field, Varnish returns a 304 (not modified) response. A 304
response does not contain message body. This behavior is similar to as when using If-None-Match.

Example of an If-Modified-Since header:

If-Modified-Since: Wed, 01 Sep 2004 13:24:52 GMT

Figure 21: If-Modified-Since control flow diagram.

Page 106 Chapter 6 HTTP

Tip

The subsection Understanding Last-Modified and If-Modified-Since in varnishtest explains
further these concepts with a practical VTC example.

Chapter 6 HTTP Page 107

6.6 Allowance

• How to control which caches can be served?

• Cache-Control and Pragma (for backwards compatibility only)

Varnish allows you to validate whether the stored response (cache) can be reused or not. Validation
can be done by checking whether the presented request does not contain the no-cache directive.
This subsection reviews two common header fields, Cache-Control and Pragma, to check caching
allowance.

Page 108 Chapter 6 HTTP

6.6.1 Cache-Control
The Cache-Control header field specifies directives that must be applied by all caching
mechanisms (from proxy cache to browser cache).

Table 12: Most common cache-control argument for each context

Directives Request Response

no-cache X X

no-store X X

max-age X X

s-maxage X

max-stale X

min-fresh X

no-transform X X

only-if-cached X

public X

private X

must-revalidate X

proxy-revalidate X

Table 12 summarizes the directives you may use for each context. The most relevant directives of
Cache-Control are:

• public: The response may be cached by any cache.

• no-store: The response body must not be stored by any cache mechanism.

• no-cache: Authorizes a cache mechanism to store the response in its cache but it must not
reuse it without validating it with the origin server first.

In order to avoid any confusion with this argument think of it as a
"store-but-do-no-serve-from-cache-without-revalidation" instruction.

• max-age: Specifies the period in seconds during which the cache is considered fresh.

• s-maxage: Like max-age but it applies only to public caches.

• must-revalidate: Indicates that a stale cache item can not be served without revalidation
with the origin server first.

Example of a Cache-Control header:

Cache-Control: public, must-revalidate, max-age=2592000

Chapter 6 HTTP Page 109

A more hands-on explanation as VTC can be found in the subsection Understanding Cache-Control in
varnishtest.

Note

Cache-Control always overrides Expires.

Note

By default, Varnish does not care about the Cache-Control request header. If you want to
let users update the cache via a force refresh you need to do it yourself.

Page 110 Chapter 6 HTTP

6.6.2 Pragma

• Only for legacy

• Treat Pragma: no-cache as Cache-Control: no-cache

The Pragma request header is a legacy header and should no longer be used. Some applications
still send headers like Pragma: no-cache but this is for backwards compatibility reasons only. Any
proxy cache should treat Pragma: no-cache as Cache-Control: no-cache, and should not be
seen as a reliable header especially when used as a response header.

Chapter 6 HTTP Page 111

6.7 Freshness

• Fresh object: age has not yet exceeded its freshness lifetime

• Stale object: has exceeded its freshness lifetime, i.e., expired object

When reusing a stored response (cached object), you should always check its freshness and evaluate
whether to deliver expired objects or not. A response's freshness lifetime is the length of time
between its generation by the origin server and its expiration time. A stale (expired) object can also
be reused, but only after further validation with the origin server.

As defined in RFC7234 [https://tools.ietf.org/html/rfc7234#section-4.2]:

A response's age is the time that has passed since it was generated by, or successfully validated with,
the origin server. The primary mechanism for determining freshness is for an origin server to provide
an explicit expiration time in the future, using either the ``Expires`` header field or the ``max-age``
response directive.

Page 112 Chapter 6 HTTP

https://tools.ietf.org/html/rfc7234#section-4.2

6.7.1 Age

• Response header field calculated at the cache server, i.e., Varnish

• Varnish sends an additional response header field, Age, to indicate the age of the cache

• Clients (and Varnish) will use the Age header field to determine the freshness of a cache

• max-age-based equation: cache duration = max-age - Age

• Age can be used to disallow caches at the client side

Consider what happens if you let Varnish cache content for a week. If Varnish does not calculate the
age of a cached object, Varnish might happily inform clients that the content is fresh, but the cache
could be older than the maximum allowed max-age. By age we mean an estimate amount of time
since the response was generated or successfully validated at the origin server.

Client browsers calculate a cache duration based on the Age header field and the max-age directive
from Cache-Control. If this calculation results in a negative number, the browser does not cache
the response locally. Negative cache duration times, however, do not prevent browsers from using
the received object. Varnish does the same, if you put one Varnish server in front of another.

6.7.1.1 Exercise: Use article.php to test Age

1. Copy article.php from Varnish-Book/material/webdev/ to /var/www/html/

2. Send a request to article.php via Varnish, and see the response Age header field in
varnishlog -g request -i ReqHeader,RespHeader

3. Click the link several times and refresh your browser. Can you identify patterns?

4. Analyze the output of varnishstat -f MAIN.client_req -f MAIN.cache_hit in addition
to varnishlog

5. Can you use the Age field to determine whether Varnish made a cache hit?

6. What is the difference between caching time in Varnish and the client?

7. Use different browsers and analyze whether their internal caches work different

You might encounter that different browsers have different behaviors. Some of them might cache
content locally, and their behavior when refreshing might be different, which can be very confusing.
This just highlights that Varnish is not the only part of your web-stack that parses and honors
cache-related headers. There might also be other caches along the way which you do not control,
like a company-wide proxy server.

Since browsers might interpret cache headers differently, it is a good idea to control them in your
cache server. In the next chapters, you will learn how to modify the response headers Varnish sends.
This also allows your origin server to emit response headers that should be seen and used by
Varnish only, not in your browser.

When browsers decide to load a resource from their local cache, requests are never sent. Therefore
this exercise and these type of tests are not possible to be simulated in varnishtest.

Chapter 6 HTTP Page 113

6.7.2 Expires

• Used to stale objects

• Response header field only

The Expires response header field gives the time after which the response is considered stale.
Normally, a stale cache item should not be returned by any cache (proxy cache or client cache). The
syntax for this header is:

Expires: GMT formatted date

It is recommended not to define Expires too far in the future. Setting it to 1 year is usually enough.
The use of Expires does not prevent the cached object from being updated. For example, if the
name of the resource is updated.

Expires and Cache-Control do more or less the same job, but Cache-Control gives you more
control. The most significant differences between these two headers is:

• Cache-Control uses relative times in seconds

• Cache-Control is both a request and a response header field.

• Expires always returns an absolute time

• Expires is a response header field only

Expires works best for files that are part of a website design like JavaScripts stylesheets or images.

Tip

To learn more about the behavior of Expires, refer to the subsection Understanding Expires
in varnishtest.

Page 114 Chapter 6 HTTP

6.8 Availability of Header Fields

Table 13: Summary of HTTP header fields and their scope

Header Request Response

Expires X

Cache-Control X X

Last-Modified X

If-Modified-Since X

If-None-Match X

Etag X

Pragma X X

Vary X

Age X

Chapter 6 HTTP Page 115

6.9 Exercise: Test Various Cache Headers Fields with a Real
Browser
Against a real backend:

1. Use httpheadersexample.php via your Varnish server to experiment and get a sense of what it is
all about.

2. Copy the PHP file from Varnish-Book/material/webdev/ to /var/www/html/

3. Use varnishstat -f MAIN.client_req -f MAIN.cache_hit and
varnishlog -g request -i ReqHeader,RespHeader to analyze the responses.

4. Try every link several times by clicking on them and refreshing your browser.

5. Analyze the response in your browser and the activity in your Varnish server.

6. Discuss what happens when having the Cache-Control and Expires fields in the third link.

7. When testing Last-Modified and If-Modified-Since, does your browser issue a request
to Varnish? If the item was in cache, does Varnish query the origin server?

8. Try the Vary header field from two different browsers.

When performing this exercise, try to see if you can spot the patterns. There are many levels of
cache on the web, and you have to consider them besides Varnish. If it has not happened already, it
is likely that the local cache of your browser will confuse you at least a few times through this course.
When that happens, pull up varnishlog, varnishstat and another browser, or use client
mock-ups in varnishtest instead of browsers.

Page 116 Chapter 6 HTTP

7 VCL Basics
In this chapter, you will learn the following topics:

• The Varnish Configuration Language (VCL) is a domain-specific language

• VCL as a finite state machine

• States as subroutines

• Varnish includes built-in subroutines

• Available functions, legal return actions and variables

The Varnish Configuration Language (VCL) is a domain-specific language designed to describe
request handling and document caching policies for Varnish Cache. When a new configuration is
loaded, the VCC process, created by the Manager process, translates the VCL code to C. This C code
is compiled typically by gcc to a shared object. The shared object is then loaded into the cacher
process.

This chapter focuses on the most important tasks to write effective VCL code. For this, you will learn
the basic syntax of VCL, and the most important VCL built-in subroutines: vcl_recv and
vcl_backend_response. All other built-in subroutines are taught in the next chapter.

Tip

Remember that Varnish has many reference manuals. For more details about VCL, check its
manual page by issuing man vcl.

Chapter 7 VCL Basics Page 117

7.1 Varnish Finite State Machine

• VCL workflow seen as a finite state machine – See Figure 22 in the book

• States are conceptualized and implemented as subroutines, e.g., sub vcl_recv

• Built-in subroutines start with vcl_, which is a reserved prefix

• return (action) terminates subroutines, where action is a keyword that indicates the next
step to do

Snippet from vcl_recv subroutine

sub vcl_recv {
 if (req.method != "GET" && req.method != "HEAD") {
 return (pass);
 }
 return (hash);
}

Page 118 Chapter 7 VCL Basics

Frontend (From Client) Workthread

Backend (To Server) Workthread

Request

vcl_recv

Restart

vcl_hash

lookup

vcl_deliver

Done

vcl_synth

vcl_hit

vcl_pass

vcl_miss

vcl_backend_fetch

vcl_purge

hit miss purge

vcl_pipe

pipe

pass hit-for-pass waiting

busy

read beresp(headers)

vcl_backend_response vcl_backend_error

cacheable?

cache

yes

do not cache

hit-for-pass

Figure 22: Simplified Version of the Varnish Finite State Machine

Chapter 7 VCL Basics Page 119

VCL is often described as a finite state machine. Each state has available certain parameters that you
can use in your VCL code. For example: response HTTP headers are only available after
vcl_backend_fetch state.

Figure 22 shows a simplified version of the Varnish finite state machine. This version shows by no
means all possible transitions, but only a typical set of them. Figure 23 and Figure 24 show the
detailed version of the state machine for the frontend and backend worker respectively.

States in VCL are conceptualized as subroutines, with the exception of the waiting state described in
Waiting State Subroutines in VCL take neither arguments nor return values. Each subroutine
terminates by calling return (action), where action is a keyword that indicates the desired
outcome. Subroutines may inspect and manipulate HTTP header fields and various other aspects of
each request. Subroutines instruct how requests are handled.

Subroutine example:

sub pipe_if_local {
 if (client.ip ~ local) {
 return (pipe);
 }
}

To call a subroutine, use the call keyword followed by the subroutine's name:

call pipe_if_local;

Varnish has built-in subroutines that are hook into the Varnish workflow. These built-in subroutines
are all named vcl_*. Your own subroutines cannot start their name with vcl_.

Page 120 Chapter 7 VCL Basics

7.2 Detailed Varnish Request Flow for the Client Worker Thread

• Figure 23 shows the detailed request flow diagram of the backend worker.

• The grayed box is detailed in Figure 24.

Chapter 7 VCL Basics Page 121

Request received

cnt_recv:

vcl_recv{} req.*

hash purge pass pipe synth

ESI_REQ

RESTART

cnt_restart:

ok? max_restarts?

cnt_recv:

vcl_hash{} req.*

lookup

SYNTH

cnt_synth:

vcl_synth{}
req.*

resp.*

deliver restart

cnt_deliver:

Filter obj.->resp.

vcl_deliver{}
req.*

resp.*

restart deliver synth

V1D_Deliver

DONE

stream?
body

see backend graphBGFETCH FETCH

FETCH_DONE FETCH_FAIL

cnt_lookup:

vcl_hit{}
req.*

obj.*

deliver miss restart synth pass

parallel
if obj expired

cnt_miss:

vcl_miss{} req.*

fetch synth restart pass

cnt_pass:

vcl_pass{} req.*

fetch synth restart

cnt_lookup:

hash lookup

hit? miss? hit-for-pass? busy?

(waitinglist)

cnt_pipe:

filter req.*->bereq.*

vcl_pipe{}
req.*

bereq.*

pipe synth

send bereq,
copy bytes until close

SYNTH

cnt_purge:

vcl_purge{} req.*

synth restart

Figure 23: Detailed Varnish Request Flow for the Client Worker Thread

Page 122 Chapter 7 VCL Basics

7.3 The VCL Finite State Machine

• Each request is processed separately

• Each request is independent from others at any given time

• States are related, but isolated

• return(action); exits one state and instructs Varnish to proceed to the next state

• Built-in VCL code is always present and appended below your own VCL

Before we begin looking at VCL code, we should learn the fundamental concepts behind VCL. When
Varnish processes a request, it starts by parsing the request itself. Later, Varnish separates the
request method from headers, verifying that it is a valid HTTP request and so on. When the basic
parsing has completed, the very first policies are checked to make decisions.

Policies are a set of rules that the VCL code uses to make a decision. Policies help to answer
questions such as: should Varnish even attempt to find the requested resource in the cache? In this
example, the policies are in the vcl_recv subroutine.

Chapter 7 VCL Basics Page 123

7.4 VCL Syntax

• VCL files start with vcl 4.0;

• //, # and /* foo */ for comments

• Subroutines are declared with the sub keyword

• No loops, state-limited variables

• Terminating statements with a keyword for next action as argument of the return() function,
i.e.: return(action)

• Domain-specific

Starting with Varnish 4.0, each VCL file must start by declaring its version with a special vcl 4.0;
marker at the top of the file. If you have worked with a programming language or two before, the
basic syntax of Varnish should be reasonably straightforward. VCL is inspired mainly by C and Perl.
Blocks are delimited by curly braces, statements end with semicolons, and comments may be written
as in C, C++ or Perl according to your own preferences.

Subroutines in VCL neither take arguments, nor return values. Subroutines in VCL can exchange data
only through HTTP headers.

VCL has terminating statements, not traditional return values. Subroutines end execution when a
return(*action*) statement is made. The action tells Varnish what to do next. For example, "look
this up in cache", "do not look this up in the cache", or "generate an error message". To check which
actions are available at a given built-in subroutine, see the Legal Return Actions section or see the
manual page of VCL.

VCL code is part of Varnish Test Cases (VTC) in varnishtest. To learn how to insert your VCL code in
a VTC, refer to the subsection VCL in varnishtest.

Warning

If you define your own subroutine and call it from one of the built-in subroutines, executing
return(foo) does not return execution from your custom subroutine to the default
function, but returns execution from VCL to Varnish.

Page 124 Chapter 7 VCL Basics

7.5 Built-in vcl_recv

sub vcl_recv {
 if (req.method == "PRI") {
 /* We do not support SPDY or HTTP/2.0 */
 return (synth(405));
 }
 if (req.method != "GET" &&
 req.method != "HEAD" &&
 req.method != "PUT" &&
 req.method != "POST" &&
 req.method != "TRACE" &&
 req.method != "OPTIONS" &&
 req.method != "DELETE") {
 /* Non-RFC2616 or CONNECT which is weird. */
 return (pipe);
 }

 if (req.method != "GET" && req.method != "HEAD") {
 /* We only deal with GET and HEAD by default */
 return (pass);
 }
 if (req.http.Authorization || req.http.Cookie) {
 /* Not cacheable by default */
 return (pass);
 }
 return (hash);
}

• We will revisit vcl_recv after we learn more about built-in functions, keywords, variables and
return actions

The built-in VCL for vcl_recv is designed to ensure a safe caching policy even with no
modifications in VCL. It has two main uses:

1. Only handle recognized HTTP methods.

2. Cache requests with GET and HEAD headers.

Policies for no caching data are to be defined in your VCL. Built-in VCL code is executed right after
any user-defined VCL code, and is always present. You can not remove built-in subroutines, however,
you can avoid them if your VCL code reaches one of the terminating actions: pass, pipe, hash, or
synth. These terminating actions return control from the VRT (Varnish Run-Time) to Varnish.

For a well-behaving Varnish server, most of the logic in the built-in VCL is needed. Consider either
replicating all the built-in VCL logic in your own VCL code, or let your client requests be handled by
the built-in VCL code.

Chapter 7 VCL Basics Page 125

We will revisit and discuss in more detail the vcl_recv subroutine in
VCL Built-in Subroutines, but before, let's learn more about built-in functions, keywords,
variables and return actions

Page 126 Chapter 7 VCL Basics

7.6 VCL Built-in Functions and Keywords
Functions:

• regsub(str, regex, sub)

• regsuball(str, regex, sub)

• ban(boolean expression)

• hash_data(input)

• synthetic(str)

Keywords:

• call subroutine

• return(action)

• new

• set

• unset

All functions are available in all subroutines, except the listed in the table below.

Table 14: Specific Function Availability

Function Subroutines

hash_data vcl_hash

new vcl_init

synthetic vcl_synth, vcl_backend_error

VCL offers a handful of simple to use built-in functions that allow you to modify strings, add bans,
restart the VCL state engine and return control to the Varnish Run Time (VRT) environment. This
book describes the most important functions in later sections, so the description at this point is brief.

regsub() and regsuball() have the same syntax and does the almost same thing: They both
take a string str as input, search it with a regular-expression regex and replace it with another
string. The difference between regsub() and regsuball() is that the latter changes all
occurrences while the former only affects the first match.

The ban(boolean expression) function invalidates all objects in cache that match the boolean
expression. banning and purging in detailed in the Cache Invalidation chapter.

Chapter 7 VCL Basics Page 127

7.7 Legal Return Actions

Table 15: VCL built-in subroutines and their legal returns at the frontend (client) side

subroutine scope deliver fetch restart hash pass pipe synth purge lookup

vcl_deliver client x x x

vcl_hash client x

vcl_hit client x x x x x

vcl_miss client x x x x

vcl_pass client x x x

vcl_pipe client x x

vcl_purge client x x

vcl_recv client x x x x x

vcl_synth client x x

Table 16: VCL built-in subroutines and their legal returns at the backend side, vcl.load, and
vcl.discard

subroutine scope abandon retry ok fail

vcl_backend_error backend x

vcl_backend_fetch backend x

vcl_backend_response backend x x

vcl_init vcl.load x x

vcl_fini vcl.discard x

The table above shows the VCL built-in subroutines and their legal returns. return is a built-in
keyword that ends execution of the current VCL subroutine and continue to the next action step in
the request handling state machine. Legal return actions are: lookup, synth, purge, pass, pipe, fetch,
deliver, hash, restart, retry, and abandon.

Note

In Varnish 4 purge is used as a return action.

Page 128 Chapter 7 VCL Basics

7.8 Variables in VCL subroutines

Table 17: Variable Availability in VCL subroutines

subroutine req. bereq. beresp. obj. resp.

vcl_backend_fetch R/W

vcl_backend_response R/W R/W

vcl_backend_error R/W R/W

vcl_recv R/W

vcl_pipe R/W

vcl_pass R/W

vcl_hash R/W

vcl_purge R/W

vcl_miss R/W

vcl_hit R/W R

vcl_deliver R/W R R/W

vcl_synth R/W R/W

Table 17 shows the availability of variables in each VCL subroutine and whether the variables are
readable (R) or writable (W). The variables meant in this table are those which follow the prefix req.,
bereq., beresp., obj., or resp.. Recall that every transaction in Varnish is always in a state. Each
state is represented by its correspondent subroutine.

Most variables are self-explanatory but not how they influence each other, thus a brief explanation
follows: Values of request (req.) variables are assigned to backend request (bereq.) variables.
However, those values may slightly differ, because Varnish may modify client requests. For example,
HEAD requests coming from clients may be converted to GET requests towards the backend.

Changes in backend response (beresp.) variables affect response (resp.) and object (obj.)
variables. Many of the obj variables are set in resp., which are to be sent to the clients. To get
more information about a particular variable, consult the VCL man page or ask the instructor at the
course.

Additional variable prefixes from Table 17 are; client.*, server.*, and storage.*. These
prefixes are accessible from the subroutines at the frontend (client) side. Yet another variables is
now, which is accessible from all subroutines.

Chapter 7 VCL Basics Page 129

7.9 Detailed Varnish Request Flow for the Backend Worker
Thread

• See Figure 24 in the book

RETRY

vbf_stp_startfetch:

vcl_backend_fetch{} bereq.*

abandon fetch

BGFETCHFETCH

send bereq,
read beresp (headers)

vbf_stp_startfetch:

vcl_backend_response{}
bereq.*

beresp.*

retry

max? ok?
abandon

deliver

304? other?

vbf_stp_error:

vcl_backend_error{}
bereq.*

beresp.*

retry

max? ok?
deliver

RETRY

vbf_stp_condfetch:

copy obj attr

steal body

fetch_fail? ok?

vbf_stp_fetch:

setup VFPs

fetch

fetch_fail? error? ok?

FETCH_DONE

"backend synth"

FETCH_FAIL RETRY

error abandon

Figure 24 shows the vcl_backend_fetch, vcl_backend_response and vcl_backend_error
subroutines. These subroutines are the backend-counterparts to vcl_recv. You can use data
provided by the client in vcl_recv or even vcl_backend_fetch to define your caching policy. An
important difference is that you have access to bereq.* variables in vcl_backend_fetch.

You will learn more about vcl_backend_fetch in the next chapter, but before we review
vcl_backend_response because the backend response is normally processed there.

Page 130 Chapter 7 VCL Basics

7.10 VCL – vcl_backend_response

• Override cache time for certain URLs

• Strip Set-Cookie header fields that are not needed

• Strip buggy Vary header fields

• Add helper-headers to the object for use in banning (more information in later sections)

• Sanitize server response

• Apply other caching policies

Figure 24 shows that vcl_backend_response may terminate with one of the following actions:
deliver, abandon, or retry. The deliver terminating action may or may not insert the object into the
cache depending on the response of the backend.

Backends might respond with a 304 HTTP headers. 304 responses happen when the requested
object has not been modified since the timestamp If-Modified-Since in the HTTP header. If the
request hits a non fresh object (see Figure 2), Varnish adds the If-Modified-Since header with
the value of t_origin to the request and sends it to the backend.

304 responses do not contain a message body. Thus, Varnish builds the response using the body
from cache. 304 responses update the attributes of the cached object.

Chapter 7 VCL Basics Page 131

7.10.1 vcl_backend_response
built-in vcl_backend_response

sub vcl_backend_response {
 if (beresp.ttl <= 0s ||
 beresp.http.Set-Cookie ||
 beresp.http.Surrogate-control ~ "no-store" ||
 (!beresp.http.Surrogate-Control &&
 beresp.http.Cache-Control ~ "no-cache|no-store|private") ||
 beresp.http.Vary == "*") {
 /*
 * Mark as "Hit-For-Pass" for the next 2 minutes
 */
 set beresp.ttl = 120s;
 set beresp.uncacheable = true;
 }
 return (deliver);
}

The vcl_backend_response built-in subroutine is designed to avoid caching in conditions that are
most probably undesired. For example, it avoids caching responses with cookies, i.e., responses with
Set-Cookie HTTP header field. This built-in subroutine also avoids request serialization described in
the Waiting State section.

To avoid request serialization, beresp.uncacheable is set to true, which in turn creates a
hit-for-pass object. The hit-for-pass section explains in detail this object type.

If you still decide to skip the built-in vcl_backend_response subroutine by having your own and
returning deliver, be sure to never set beresp.ttl to 0. If you skip the built-in subroutine and
set 0 as TTL value, you are effectively removing objects from cache that could eventually be used to
avoid request serialization.

Note

Varnish 3.x has a hit_for_pass return action. In Varnish 4, this action is achieved by setting
beresp.uncacheable to true. The hit-for-pass section explains this in more detail.

Page 132 Chapter 7 VCL Basics

7.10.2 The Initial Value of beresp.ttl
Before Varnish runs vcl_backend_response, the beresp.ttl variable has already been set to a
value. beresp.ttl is initialized with the first value it finds among:

• The s-maxage variable in the Cache-Control response header field

• The max-age variable in the Cache-Control response header field

• The Expires response header field

• The default_ttl parameter.

Only the following status codes will be cached by default:

• 200: OK

• 203: Non-Authoritative Information

• 300: Multiple Choices

• 301: Moved Permanently

• 302: Moved Temporarily

• 304: Not modified

• 307: Temporary Redirect

• 410: Gone

• 404: Not Found

You can cache other status codes than the ones listed above, but you have to set the beresp.ttl
to a positive value in vcl_backend_response. Since beresp.ttl is set before
vcl_backend_response is executed, you can modify the directives of the Cache-Control header
field without affecting beresp.ttl, and vice versa. Cache-Control directives are defined in
RFC7234 Section 5.2.

A backend response may include the response header field of maximum age for shared caches
s-maxage. This field overrides all max-age values throughout all Varnish servers in a multiple
Varnish-server setup. For example, if the backend sends
Cache-Control: max-age=300, s-maxage=3600, all Varnish installations will cache objects with
an Age value less or equal to 3600 seconds. This also means that responses with Age values
between 301 and 3600 seconds are not cached by the clients' web browser, because Age is greater
than max-age.

A sensible approach is to use the s-maxage directive to instruct Varnish to cache the response.
Then, remove the s-maxage directive using regsub() in vcl_backend_response before
delivering the response. In this way, you can safely use s-maxage as the cache duration for Varnish
servers, and set max-age as the cache duration for clients.

Chapter 7 VCL Basics Page 133

Warning

Bear in mind that removing or altering the Age response header field may affect how
responses are handled downstream. The impact of removing the Age field depends on the
HTTP implementation of downstream intermediaries or clients.

For example, imagine that you have a three Varnish-server serial setup. If you remove the
Age field in the first Varnish server, then the second Varnish server will assume Age=0. In this
case, you might inadvertently be delivering stale objects to your client.

Page 134 Chapter 7 VCL Basics

7.10.3 Example: Setting TTL of .jpg URLs to 60 seconds

sub vcl_backend_response {
 if (bereq.url ~ "\.jpg$") {
 set beresp.ttl = 60s;
 }
}

The above example caches all URLs ending with .jpg for 60 seconds. Keep in mind that the built-in
VCL is still executed. That means that images with a Set-Cookie field are not cached.

Chapter 7 VCL Basics Page 135

7.10.4 Example: Cache .jpg for 60 seconds only if s-maxage is not present

sub vcl_backend_response {
 if (beresp.http.cache-control !~ "s-maxage" && bereq.url ~ "\.jpg$") {
 set beresp.ttl = 60s;
 }
}

The purpose of the above example is to allow a gradual migration to using a backend-controlled
caching policy. If the backend does not supply s-maxage, and the URL is a jpg file, then Varnish sets
beresp.ttl to 60 seconds.

The Cache-Control response header field can contain a number of directives. Varnish parses this
field and looks for s-maxage and max-age.

By default, Varnish sets beresp.ttl to the value of s-maxage if found. If s-maxage is not found,
Varnish uses the value max-age. If neither exists, Varnish uses the Expires response header field
to set the TTL. If none of those header fields exist, Varnish uses the default TTL, which is 120
seconds.

The default parsing and TTL assignment are done before vcl_backend_response is executed. The
TTL changing process is recorded in the TTL tag of varnishlog.

Page 136 Chapter 7 VCL Basics

7.10.5 Exercise: Avoid Caching a Page

• Write a VCL which avoids caching the index page at all

• Your VCL should cover both resource targets: / and /index.html

When trying this out, remember that Varnish keeps the Host header field in req.http.host and
the requested resource in req.url. For example, in a request to http://www.example.com/index.html,
the http:// part is not seen by Varnish at all, req.http.host has the value www.example.com and
req.url the value /index.html. Note how the leading / is included in req.url.

If you need help, see Solution: Avoid caching a page.

Chapter 7 VCL Basics Page 137

7.10.6 Exercise: Either use s-maxage or set TTL by file type
Write a VCL that:

• uses Cache-Control: s-maxage when present,

• caches .jpg for 30 seconds if s-maxage is not present,

• caches .html for 10 seconds if s-maxage isn't present, and

• removes the Set-Cookie header field if s-maxage or the above rules indicate that Varnish
should cache.

If you need help, see Solution: Either use s-maxage or set TTL by file type.

Tip

Divide and conquer! Most somewhat complex VCL tasks are easily solved when you divide the
tasks into smaller problems and solve them individually. Try solving each part of the exercise
by itself first.

Note

Varnish automatically parses s-maxage for you, so you only need to check if it is there or not.
Remember that if s-maxage is present, Varnish has already used it to set beresp.ttl.

Page 138 Chapter 7 VCL Basics

7.11 Waiting State

• Request serialization is a non desired side-effect that is handled in the vcl_backend_response
subroutine

• Designed to improve response performance

The waiting state is reached when a request n arrives while a previous identical request 0 is being
handled at the backend. In this case, request 0 is set as busy and all subsequent requests n are
queued in a waiting list. If the fetched object from request 0 is cacheable, all n requests in the waiting
list call the lookup operation again. This retry will hopefully hit the desired object in cache. As a
result, only one request is sent to the backend.

The waiting state is designed to improve response performance. However, a counterproductive
scenario, namely request serialization, may occur if the fetched object is uncacheable, and so is
recursively the next request in the waiting list. This situation forces every single request in the
waiting list to be sent to the backend in a serial manner. Serialized requests should be avoided
because their performance is normally poorer than sending multiple requests in parallel. The built-in
vcl_backend_response subroutine avoids request serialization.

Chapter 7 VCL Basics Page 139

7.12 Summary of VCL Basics

• VCL is all about policies

• VCL provides a state machine for controlling Varnish

• Each request is handled independently

• Building a VCL file is done one line at a time

VCL provides subroutines that allow you to affect the handling of any single request almost
anywhere in the execution chain. This provides pros and cons as any other programming language.

This book is not a complete reference guide to how you can deal with every possible scenario in VCL,
but if you master the basics of VCL you can solve complex problems that nobody has thought about
before. And you can usually do it without requiring too many different sources of documentation.

Whenever you are working on VCL, you should think of what that exact line you are writing has to do.
The best VCL is built by having many independent sections that do not interfere with each other
more than what they have to.

Remember that there is a built-in VCL. If your own VCL code does not reach a return statement,
the built-in VCL subroutine is executed after yours. If you just need a little modification of a
subroutine, you can use the code from {varnish-source-code}/bin/varnishd/builtin.vcl
as a template.

Page 140 Chapter 7 VCL Basics

8 VCL Subroutines

• Typical subroutines to customize: vcl_recv, vcl_pass, vcl_backend_fetch,
vcl_backend_response, vcl_hash, vcl_hit, vcl_miss, vcl_deliver, and vcl_synth

• If your VCL subroutine does return, you skip the built-in VCL subroutine

• The built-in VCL subroutines are always appended to yours

This chapter covers the VCL subroutines where you customize the behavior of Varnish. VCL
subroutines can be used to: add custom headers, change the appearance of the Varnish error
message, add HTTP redirect features in Varnish, purge content, and define what parts of a cached
object is unique. After this chapter, you should know where to add your custom policies and you will
be ready to dive into more advanced features of Varnish and VCL.

Note

It is strongly advised to let the default built-in subroutines whenever is possible. The built-in
subroutines are designed with safety in mind, which often means that they handle any flaws
in your VCL code in a reasonable manner.

Tip

Looking at the code of built-in subroutines can help you to understand how to build your own
VCL code. Built-in subroutines are in the file
/usr/share/doc/varnish/examples/builtin.vcl.gz or
{varnish-source-code}/bin/varnishd/builtin.vcl. The first location may change
depending on your distro.

Chapter 8 VCL Subroutines Page 141

8.1 VCL – vcl_recv

• Normalize client input

• Pick a backend web server

• Re-write client-data for web applications

• Decide caching policy based on client input

• Access Control Lists (ACL)

• Security barriers, e.g., against SQL injection attacks

• Fixing mistakes, e.g., index.htlm -> index.html

vcl_recv is the first VCL subroutine executed, right after Varnish has parsed the client request into
its basic data structure. vcl_recv has four main uses:

1. Modifying the client data to reduce cache diversity. E.g., removing any leading "www." in the
Host: header.

2. Deciding which web server to use.

3. Deciding caching policy based on client data. For example; no caching POST requests but only
caching specific URLs.

4. Executing re-write rules needed for specific web applications.

In vcl_recv you can perform the following terminating actions:

pass: It passes over the cache lookup, but it executes the rest of the Varnish request flow. pass does
not store the response from the backend in the cache.

pipe: This action creates a full-duplex pipe that forwards the client request to the backend without
looking at the content. Backend replies are forwarded back to the client without caching the content.
Since Varnish does no longer try to map the content to a request, any subsequent request sent over
the same keep-alive connection will also be piped. Piped requests do not appear in any log.

hash: It looks up the request in cache.

purge: It looks up the request in cache in order to remove it.

synth - Generate a synthetic response from Varnish. This synthetic response is typically a web page
with an error message. synth may also be used to redirect client requests.

It's also common to use vcl_recv to apply some security measures. Varnish is not a replacement
for intrusion detection systems, but can still be used to stop some typical attacks early. Simple
Access Control Lists (ACLs) can be applied in vcl_recv too.

For further discussion about security in VCL, take a look at the Varnish Security Firewall (VSF)
application at https://github.com/comotion/VSF. The VSF supports Varnish 3 and above. You may
also be interested to look at the Security.vcl project at https://github.com/comotion/security.vcl. The
Security.vcl project, however, supports only Varnish 3.x.

Page 142 Chapter 8 VCL Subroutines

https://github.com/comotion/VSF
https://github.com/comotion/security.vcl

Tip

The built-in vcl_recv subroutine may not cache all what you want, but often it's better not
to cache some content instead of delivering the wrong content to the wrong user. There are
exceptions, of course, but if you can not understand why the default VCL does not let you
cache some content, it is almost always worth it to investigate why instead of overriding it.

Chapter 8 VCL Subroutines Page 143

8.1.1 Revisiting built-in vcl_recv

sub vcl_recv {
 if (req.method == "PRI") {
 /* We do not support SPDY or HTTP/2.0 */
 return (synth(405));
 }
 if (req.method != "GET" &&
 req.method != "HEAD" &&
 req.method != "PUT" &&
 req.method != "POST" &&
 req.method != "TRACE" &&
 req.method != "OPTIONS" &&
 req.method != "DELETE") {
 /* Non-RFC2616 or CONNECT which is weird. */
 return (pipe);
 }

 if (req.method != "GET" && req.method != "HEAD") {
 /* We only deal with GET and HEAD by default */
 return (pass);
 }
 if (req.http.Authorization || req.http.Cookie) {
 /* Not cacheable by default */
 return (pass);
 }
 return (hash);
}

Page 144 Chapter 8 VCL Subroutines

8.1.2 Example: Basic Device Detection
One way of serving different content for mobile devices and desktop browsers is to run some simple
parsing on the User-Agent header. The following VCL code is an example to create custom headers.
These custom headers differentiate mobile devices from desktop computers.

sub vcl_recv {
 if (req.http.User-Agent ~ "iPad" ||
 req.http.User-Agent ~ "iPhone" ||
 req.http.User-Agent ~ "Android") {

 set req.http.X-Device = "mobile";
 } else {
 set req.http.X-Device = "desktop";
 }
}

You can read more about different types of device detection at
https://www.varnish-cache.org/docs/trunk/users-guide/devicedetection.html

This simple VCL will create a request header called X-Device which will contain either mobile or
desktop. The web server can then use this header to determine what page to serve, and inform
Varnish about it through Vary: X-Device.

It might be tempting to just send Vary: User-Agent, but that requires you to normalize the
User-Agent header itself because there are many tiny variations in the description of similar
User-Agents. This normalization, however, leads to loss of detailed information of the browser. If you
pass the User-Agent header without normalization, the cache size may drastically inflate because
Varnish would keep possibly hundreds of different variants per object and per tiny User-Agent
variants. For more information on the Vary HTTP response header, see the Vary section.

Note

If you do use Vary: X-Device, you might want to send Vary: User-Agent to the users
after Varnish has used it. Otherwise, intermediary caches will not know that the page looks
different for different devices.

Chapter 8 VCL Subroutines Page 145

https://www.varnish-cache.org/docs/trunk/users-guide/devicedetection.html

8.1.3 Exercise: Rewrite URL and Host Header Fields

1. Copy the Host header field (req.http.Host) and URL (req.url) to two new request headers:
req.http.x-host and req.http.x-url.

2. Ensure that www.example.com and example.com are cached as one, using regsub().

3. Rewrite all URLs under http://sport.example.com to http://example.com/sport/. For example:
http://sport.example.com/index.html to http://example.com/sport/index.html.

4. Use HTTPie to verify the result.

• Extra: Make sure / and /index.html are cached as one object.

• Extra 2: Make the redirection work for any domain with sport. at the front. E.g:
sport.example.com, sport.foobar.example.net, sport.blatti, etc.

For the first point, use set req.http.headername = "value"; or
set req.http.headername = regsub(...);.

In point 2, change req.http.host by calling the function regsub(str, regex, sub). str is the
input string, in this case, req.http.host. regex is the regular-expression matching whatever
content you need to change. Use ^ to match what begins with www, and \. to finish the
regular-expression, i.e. ^www.. sub is what you desire to change it with, an empty string "" can be
used to remove what matches regex.

For point 3, you can check host headers with a specific domain name, for example:
if (req.http.host == "sport.example.com"). An alternative is to check for all hosts that start
with sport, regardless the domain name: if (req.http.host ~ "^sport\."). In the first case,
setting the host header is straight forward: set req.http.host = "example.com". In the second
case, you can set the host header by removing the string that precedes the domain name
set req.http.host = regsub(req.http.host,"^sport\.", ""); Finally, you rewrite the
URL in this way: set req.url = regsub(req.url, "^", "/sport");.

To simulate client requests, you can either use HTTPie or varnishtest. If you need help, see
Solution: Rewrite URL and Host Header Fields.

Tip

Remember that man vcl contains a reference manual with the syntax and details of
functions such as regsub(str, regex, sub). We recommend you to leave the default VCL
file untouched and create a new file for your VCL code. Remember to update the location of
the VCL file in the Varnish configuration file and reload it.

Page 146 Chapter 8 VCL Subroutines

8.2 VCL – vcl_pass

• Called upon entering pass mode

sub vcl_pass {
 return (fetch);
}

The vcl_pass subroutine is called after a previous subroutine returns the pass action. This actions
sets the request in pass mode. vcl_pass typically serves as an important catch-all for features you
have implemented in vcl_hit and vcl_miss.

vcl_pass may return three different actions: fetch, synth, or restart. When returning the fetch action,
the ongoing request proceeds in pass mode. Fetched objects from requests in pass mode are not
cached, but passed to the client. The synth and restart return actions call their corresponding
subroutines.

Chapter 8 VCL Subroutines Page 147

8.2.1 hit-for-pass

• Used when an object should not be cached

• hit-for-pass object instead of fetched object

• Has TTL

Some requested objects should not be cached. A typical example is when a requested page contains
the Set-Cookie response header, and therefore it must be delivered only to the client that
requests it. In this case, you can tell Varnish to create a hit-for-pass object and stores it in the cache,
instead of storing the fetched object. Subsequent requests are processed in pass mode.

When an object should not be cached, the beresp.uncacheable variable is set to true. As a result,
the cacher process keeps a hash reference to the hit-for-pass object. In this way, the lookup operation
for requests translating to that hash find a hit-for-pass object. Such requests are handed over to the
vcl_pass subroutine, and proceed in pass mode.

As any other cached object, hit-for-pass objects have a TTL. Once the object's TTL has elapsed, the
object is removed from the cache.

Page 148 Chapter 8 VCL Subroutines

8.3 VCL – vcl_backend_fetch

sub vcl_backend_fetch {
 return (fetch);
}

vcl_backend_fetch can be called from vcl_miss or vcl_pass. When vcl_backend_fetch is
called from vcl_miss, the fetched object may be cached. If vcl_backend_fetch is called from
vcl_pass, the fetched object is not cached even if obj.ttl or obj.keep variables are greater
than zero.

A relevant variable is bereq.uncacheable. This variable indicates whether the object requested
from the backend may be cached or not. However, all objects from pass requests are never cached,
regardless the bereq.uncacheable variable.

vcl_backend_fetch has two possible terminating actions, fetch or abandon. The fetch action sends
the request to the backend, whereas the abandon action calls the vcl_synth routine. The built-in
vcl_backend_fetch subroutine simply returns the fetch action. The backend response is
processed by vcl_backend_response or vcl_backend_error.

Chapter 8 VCL Subroutines Page 149

8.4 VCL – vcl_hash

• Defines what is unique about a request.

• vcl_hash is always visited after vcl_recv or when another subroutine returns the hash
action keyword.

sub vcl_hash {
 hash_data(req.url);
 if (req.http.host) {
 hash_data(req.http.host);
 } else {
 hash_data(server.ip);
 }
 return (lookup);
}

vcl_hash defines the hash key to be used for a cached object. Hash keys differentiate one cached
object from another. The default VCL for vcl_hash adds the hostname or IP address, and the
requested URL to the cache hash.

One usage of vcl_hash is to add a user-name in the cache hash to identify user-specific data.
However, be warned that caching user-data should only be done cautiously. A better alternative
might be to hash cache objects per session instead.

The vcl_hash subroutine returns the lookup action keyword. Unlike other action keywords,
lookup is an operation, not a subroutine. The next state to visit after vcl_hash depends on what
lookup finds in the cache.

When the lookup operation does not match any hash, it creates an object with a busy flag and inserts
it in cache. Then, the request is sent to the vcl_miss subroutine. The busy flag is removed once the
request is handled, and the object is updated with the response from the backend.

Subsequent similar requests that hit busy flagged objects are sent into a waiting list. This waiting list
is designed to improve response performance, and it is explain the Waiting State section.

Note

One cache hash may refer to one or many object variations. Object variations are created
based on the Vary header field. It is a good practice to keep several variations under one
cache hash, than creating one hash per variation.

Page 150 Chapter 8 VCL Subroutines

8.5 VCL – vcl_hit

• Executed after the lookup operation, called by vcl_hash, finds (hits) an object in the cache.

sub vcl_hit {
 if (obj.ttl >= 0s) {
 // A pure unadultered hit, deliver it
 return (deliver);
 }
 if (obj.ttl + obj.grace > 0s) {
 // Object is in grace, deliver it
 // Automatically triggers a background fetch
 return (deliver);
 }
 // fetch & deliver once we get the result
 return (fetch);
}

The vcl_hit subroutine typically terminate by calling return() with one of the following
keywords: deliver, restart, or synth.

deliver returns control to vcl_deliver if the TTL + grace time of an object has not elapsed.
If the elapsed time is more than the TTL, but less than the TTL + grace time, then deliver calls
for background fetch in parallel to vcl_deliver. The background fetch is an asynchronous call that
inserts a fresher requested object in the cache. Grace time is explained in the Grace Mode section.

restart restarts the transaction, and increases the restart counter. If the number of restarts is
higher than max_restarts counter, Varnish emits a guru meditation error.

synth(status code, reason) returns the specified status code to the client and abandon the
request.

Chapter 8 VCL Subroutines Page 151

8.6 VCL – vcl_miss

• Subroutine called if a requested object is not found by the lookup operation.

• Contains policies to decide whether or not to attempt to retrieve the document from the
backend, and which backend to use.

sub vcl_miss {
 return (fetch);
}

The subroutines vcl_hit and vcl_miss are closely related. It is rare that you customize them,
because modification of HTTP request headers is typically done in vcl_recv. However, if you do not
wish to send the X-Varnish header to the backend server, you can remove it in vcl_miss or
vcl_pass. For that case, you can use unset bereq.http.x-varnish;.

Page 152 Chapter 8 VCL Subroutines

8.7 VCL – vcl_deliver

• Common last exit point for all request workflows, except requests through vcl_pipe

• Often used to add and remove debug-headers

sub vcl_deliver {
 return (deliver);
}

The vcl_deliver subroutine is simple, and it is also very useful to modify the output of Varnish. If
you need to remove a header, or add one that is not supposed to be stored in the cache,
vcl_deliver is the place to do it.

The variables most useful and common to modify in vcl_deliver are:
resp.http.*

Headers that are sent to the client. They can be set and unset.
resp.status

The status code (200, 404, 503, etc).
resp.reason

The HTTP status message that is returned to the client.
obj.hits

The count of cache-hits on this object. Therefore, a value of 0 indicates a miss. This variable can
be evaluated to easily reveal whether a response comes from a cache hit or miss.

req.restarts

The number of restarts issued in VCL - 0 if none were made.

Chapter 8 VCL Subroutines Page 153

8.8 VCL – vcl_synth

• Used to generate content within Varnish

• Error messages can be created here

• Other use cases: redirecting users (301/302 redirects)

vcl/default-vcl_synth.vcl:

sub vcl_synth {
 set resp.http.Content-Type = "text/html; charset=utf-8";
 set resp.http.Retry-After = "5";
 synthetic({"<!DOCTYPE html>
<html>
 <head>
 <title>"} + resp.status + " " + resp.reason + {"</title>
 </head>
 <body>
 <h1>Error "} + resp.status + " " + resp.reason + {"</h1>
 <p>"} + resp.reason + {"</p>
 <h3>Guru Meditation:</h3>
 <p>XID: "} + req.xid + {"</p>
 <hr>
 <p>Varnish cache server</p>
 </body>
</html>
"});
 return (deliver);
}

You can create synthetic responses, e.g., personalized error messages, in vcl_synth. To call this
subroutine you do:

return (synth(status_code, "reason"));

Note that synth is not a keyword, but a function with arguments.

You must explicitly return the status code and reason arguments for vcl_synth. Setting
headers on synthetic response bodies are done on resp.http.

Note

From vcl/default-vcl_synth.vcl, note that {" and "} can be used to make multi-line
strings. This is not limited to the synthetic() function, but one can be used anywhere.

Page 154 Chapter 8 VCL Subroutines

Note

A vcl_synth defined object is never stored in cache, contrary to a vcl_backend_error
defined object, which may end up in cache. vcl_synth and vcl_backend_error replace
vcl_error from Varnish 3.

Chapter 8 VCL Subroutines Page 155

8.8.1 Example: Redirecting requests with vcl_synth

sub vcl_recv {
 if (req.http.host == "www.example.com") {
 set req.http.location = "http://example.com" + req.url;
 return (synth(750, "Permanently moved"));
 }
}

sub vcl_synth {
 if (resp.status == 750) {
 set resp.http.location = req.http.location;
 set resp.status = 301;
 return (deliver);
 }
}

Redirecting with VCL is fairly easy – and fast. Basic HTTP redirects work when the HTTP response is
either 301 Moved Permanently or 302 Found. These response have a Location header field telling the
web browser where to redirect.

Note

The 301 response can affect how browsers prioritize history and how search engines treat the
content. 302 responses are temporary and do not affect search engines as 301 responses do.

Page 156 Chapter 8 VCL Subroutines

8.9 Exercise: Modify the HTTP response header fields

• Add a header field holding the string HIT if the requested resourced was found in cache, or
MISS otherwise

• "Rename" the Age header field to X-Age

If you need help, see Solution: Modify the HTTP response header fields.

Chapter 8 VCL Subroutines Page 157

8.10 Exercise: Change the error message

• Make the default error message more friendly.

If you need help, see Solution: Change the error message.

Page 158 Chapter 8 VCL Subroutines

9 Cache Invalidation

• Cache invalidation is an important part of your cache policy

• Varnish automatically invalidates expired objects

• You can proactively invalidate objects with Varnish

• You should define your cache invalidation rules before caching objects specially in production
environments

There are four mechanisms to invalidate caches in Varnish:

1. HTTP PURGE

• Use the vcl_purge subroutine

• Invalidate caches explicitly using objects' hashes

• vcl_purge is called via return(purge) from vcl_recv

• vcl_purge removes all variants of an object from cache, freeing up memory

• The restart return action can be used to update immediately a purged object

2. Banning

• Use the built-in function ban(regex)

• Invalidates objects in cache that match the regular-expression

• Does not necessarily free up memory at once

• Also accessible from the management interface

3. Force Cache Misses

• Use req.hash_always_miss in vcl_recv

• If set to true, Varnish disregards any existing objects and always (re)fetches from the
backend

• May create multiple objects as side effect

• Does not necessarily free up memory at once

4. Surrogate keys

• For websites with the need for cache invalidation at a very large scale

• Varnish Software's implementation of surrogate keys

• Flexible cache invalidation based on cache tags

Chapter 9 Cache Invalidation Page 159

• Available as hashtwo VMOD in Varnish Plus 4.0

• Available as xkey VMOD in Varnish Cache 4.1 and later

Page 160 Chapter 9 Cache Invalidation

9.1 Purge - Bans - Cache Misses - Surrogate Keys
Which and when to use?

Table 18: Comparison Between: Purge, Softpurge, Bans, Force Cache Misses and Surrogate keys
(hashtwo/xkey)

Purge Soft Purge Bans
Force Cache

Misses Surrogate keys

Targets Specific object
(with all its
variants)

Specific object
(with all its
variants)

Regex patterns One specific
object (with all
its variants)

All objects with
a common
hashtwo key

Frees
memory

Immediately After grace
time

After pattern is
checked and
matched

No Immediately

Scalability High High High if used
properly

Low; memory
usage
increases
because old
objects are not
invalidated.

High

CLI No No Yes No No

VCL Yes Yes Yes Yes Yes

Availability Varnish Cache Varnish Cache Varnish Cache Varnish Cache Hashtwo
VMOD in
Varnish Plus
4.0 or xkey
VMOD in
Varnish Cache
4.1

Whenever you deal with caching, you have to eventually deal with the challenge of cache
invalidation, or content update. Varnish has different mechanisms to addresses this challenge, but
which one to use?

There is rarely a need to pick only one solution, as you can implement many of them. However, you
can try to answer the following questions:

• Am I invalidating one or many specific objects?

• Do I need to free up memory or just replace the content?

• How long time does it take to replace the content?

• Is this a regular or a one-off task?

or follow these guidelines:

• If you need to invalidate more than one item at a time, consider using bans or hashtwo/xkey.

Chapter 9 Cache Invalidation Page 161

• If it takes a long time to pull content from the backend into Varnish, consider forcing cache
misses by using req.hash_always_miss.

The rest of the chapter teaches you more about these cache invalidation mechanisms.

Note

Purge and hashtwo/xkey work very similar. The main difference is that they act on different
hash keys.

Page 162 Chapter 9 Cache Invalidation

9.2 HTTP PURGE

• If you know exactly what to remove, use HTTP PURGE

• Frees up memory, removes all Vary:-variants of the object

• Leaves it to the next client to refresh the content

• Often combined with return(restart);

• As easy as handling any other HTTP request

A purge is what happens when you pick out an object from the cache and discard it along with its
variants. A resource can exist in multiple Vary:-variants. For example, you could have a desktop
version, a tablet version and a smartphone version of your site, and use the Vary HTTP header field
in combination with device detection to store different variants of the same resource.

Usually a purge is invoked through HTTP with the method PURGE. A HTTP PURGE is another request
method just as HTTP GET. Actually, you can call the PURGE method whatever you like, but PURGE
has become the de-facto naming standard. Squid, for example, uses the PURGE method name for
the same purpose.

Purges apply to a specific object, since they use the same lookup operation as in vcl_hash.
Therefore, purges find and remove objects really fast!

There are, however, two clear down-sides. First, purges cannot use regular-expressions, and second,
purges evict content from cache regardless the availability of the backend. That means that if you
purge some objects and the backend is down, Varnish will end up having no copy of the content.

Chapter 9 Cache Invalidation Page 163

9.2.1 VCL – vcl_purge

• You may add actions to be executed once the object and its variants is purged

• Called after the purge has been executed

sub vcl_purge {
 return (synth(200, "Purged"));
}

Note

Cache invalidation with purges is done by calling return (purge); from vcl_recv in
Varnish 4. The keyword purge; from Varnish 3 has been retired.

Page 164 Chapter 9 Cache Invalidation

9.2.2 Example: PURGE
vcl/PURGE.vcl

Allow PURGE from localhost and 192.168.0.0/24
acl purgers {
 "127.0.0.1";
 "192.168.0.0"/24;
}

sub vcl_recv {
 if (req.method == "PURGE") {
 if (!client.ip ~ purgers) {
 return (synth(405));
 }
 return (purge);
 }
}

acl is a reserved keyword that is used to create Access Control Lists (ACLs). ACLs are used to control
which client IP addresses are allowed to purge cached objects.

In the example above, return (purge) ends execution of vcl_recv and jumps to vcl_hash.
When vcl_hash calls return(lookup), Varnish purges the object and then calls vcl_purge.

You can test this code with HTTPie by issuing:

http -p hH --proxy=http:http://localhost PURGE www.example.com

Alternatively, you can test it with varnishtest as in the subsection PURGE in varnishtest.

Chapter 9 Cache Invalidation Page 165

9.2.3 Exercise: PURGE an article from the backend

• Send a PURGE request to Varnish from your backend server after an article is published.

• Simulate the article publication.

• The result is that the article is evicted in Varnish.

You are provided with article.php, which fakes an article. It is recommended to create a separate
php file to implement purging.

article.php

<?php
header("Cache-Control: must-revalidate, max-age=10");
$date = new DateTime();
$now = $date->format(DateTime::RFC2822);
?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head></head>
 <body>
 <h1>This article is cached for 10 seconds</h1>

 <h2>Cache timestamp: <?php echo $now; ?></h2>
 <a href="<?=$_SERVER['PHP_SELF']?>">Refresh this page
 </body>
</html>

If you need help, see Solution: PURGE an article from the backend.

Tip

Remember to place your php files under /var/www/html/.

Page 166 Chapter 9 Cache Invalidation

9.2.4 PURGE with restart return action

• Start the VCL processing again from the top of vcl_recv

• Any changes made are kept

acl purgers {
 "127.0.0.1";
 "192.168.0.0"/24;
}

sub vcl_recv {
 # allow PURGE from localhost and 192.168.0...
 if (req.restarts == 0) {
 unset req.http.X-Purger;
 }

 if (req.method == "PURGE") {
 if (!client.ip ~ purgers) {
 return (synth(405, "Purging not allowed for " + client.ip));
 }
 return (purge);
 }
}

sub vcl_purge {
 set req.method = "GET";
 set req.http.X-Purger = "Purged";
 return (restart);
}

sub vcl_deliver {
 if (req.http.X-Purger) {
 set resp.http.X-Purger = req.http.X-Purger;
 }
}

The restart return action allows Varnish to re-run the VCL state machine with different variables.
This is useful in combination with PURGE, in the way that a purged object can be immediately
restored with a new fetched object.

Every time a restart occurs, Varnish increments the req.restarts counter. If the number of
restarts is higher than the max_restarts parameter, Varnish emits a guru meditation error. In this
way, Varnish safe guards against infinite loops.

Chapter 9 Cache Invalidation Page 167

Warning

Restarts are likely to cause a hit against the backend, so do not increase max_restarts
thoughtlessly.

Page 168 Chapter 9 Cache Invalidation

9.3 Softpurge

• Sets TTL to 0

• Allows Varnish to serve stale content to users if the backend is unavailable

• Asynchronous and automatic backend fetching to update object

Softpurge is cache invalidation mechanism that sets TTL to 0 but keeps the grace value of a cached
object. This is useful if you want to build responses using the cached object while updating it.

Softpurge is a VMOD part of varnish-modules https://github.com/varnish/varnish-modules. For
installation and usage details, please refer to its own documentation
https://github.com/varnish/varnish-modules/blob/master/docs/vmod_softpurge.rst.

Tip

The xkey VMOD has the softpurge functionality too.

Chapter 9 Cache Invalidation Page 169

https://github.com/varnish/varnish-modules
https://github.com/varnish/varnish-modules/blob/master/docs/vmod_softpurge.rst

9.4 Banning

• Use ban to invalidate caches on cache hits

• Frees memory on ban patterns matching

• Examples in the varnishadm command line interface:

• ban req.url ~ /foo

• ban req.http.host ~ example.com && obj.http.content-type ~ text

• ban.list

• Example in VCL:

• ban("req.url ~ /foo");

• Example of VCL code to act on HTTP BAN request method:

sub vcl_recv {
 if (req.method == "BAN") {
 ban("req.http.host == " + req.http.host +
 " && req.url == " + req.url);
 # Throw a synthetic page so the request won't go to the backend.
 return(synth(200, "Ban added"));
 }
}

Banning in the context of Varnish refers to adding a ban expression that prohibits Varnish to serve
certain objects from the cache. Ban expressions are more useful when using regular-expressions.

Bans work on objects already in the cache, i.e., it does not prevent new content from entering the
cache or being served. Cached objects that match a ban are marked as obsolete. Obsolete objects
are expunged by the expiry thread like any other object with obj.ttl == 0.

Ban expressions match against req.* or obj.* variables. Think about a ban expression as; "the
requested URL starts with /sport", or "the cached object has a header field with value matching
lighttpd". You can add ban expressions in three ways: 1) VCL code, 2) use a customized HTTP
request method, or 3) issuing commands in the varnishadm CLI.

Ban expressions are inserted into a ban-list. The ban-list contains:

• ID of the ban,

• timestamp when the ban entered the ban-list,

• counter of objects that have matched the ban expression,

• a C flag for completed that indicates whether a ban is invalid because it is duplicated,

• the ban expression.

To inspect the current ban-list, issue the ban.list command in the CLI:

Page 170 Chapter 9 Cache Invalidation

0xb75096d0 1318329475.377475 10 obj.http.x-url ~ test0
0xb7509610 1318329470.785875 20C obj.http.x-url ~ test1

Varnish tests bans whenever a request hits a cached object. A cached object is checked against bans
added after the last checked ban. That means that each object checks against a ban expression only
once.

Bans that match only against obj.* are also checked by a background worker thread called the ban
lurker. The parameter ban_lurker_sleep controls how often the ban lurker tests obj.* bans. The
ban lurker can be disabled by setting ban_lurker_sleep to 0.

Bans can be free memory in a very scalable manner if used properly. Bans free memory only after a
ban expression hits an object. However, since bans do not prevent new backend responses to be
inserted in the cache, client requests that trigger the eviction of an object will most likely insert a new
one. Therefore, ban lurker banning is more effective when freeing memory, as we shall see next.

Note

You may accumulate a lot of ban expressions based in req.* variables if you have many
objects with long TTL that are seldom accessed. This accumulation occurs because bans are
kept until all cached objects have been checked against them. This might impact CPU usage
and thereby performance.

Therefore, we recommend you to avoid req.* variables in your ban expressions, and to use
obj.* variables instead. Ban expressions using only obj.* are called lurker-friendly bans.

Note

If the cache is completely empty, only the last added ban stays in the ban-list.

Tip

You can also execute ban expressions via the Varnish Administration Console (VAC).

Chapter 9 Cache Invalidation Page 171

Figure 24: Executing ban expressions via the Varnish Administration Console (VAC).

Page 172 Chapter 9 Cache Invalidation

9.4.1 Lurker-Friendly Bans

• Ban expressions that match only against obj.*

• Evaluated asynchronously by the ban lurker thread

• Similar to the concept of garbage collection

Ban expressions are checked in two cases: 1) when a request hits a cached object, or 2) when the
ban lurker wakes up. The first case is efficient only if you know that the cached objects to be banned
are frequently accessed. Otherwise, you might accumulate a lot of ban expressions in the ban-list
that are never checked. The second case is a better alternative because the ban lurker can help you
keep the ban-list at a manageable size. Therefore, we recommend you to create ban expressions
that are checked by the ban lurker. Such ban expressions are called lurker-friendly bans.

Lurker-friendly ban expressions are those that use only obj.*, but not req.* variables. Since
lurker-friendly ban expressions lack of req.*, you might need to copy some of the req.* contents
into the obj structure. In fact, this copy operation is a mechanism to preserve the context of client
request in the cached object. For example, you may want to copy useful parts of the client context
such as the requested URL from req to obj.

Chapter 9 Cache Invalidation Page 173

The following snippet shows an example on how to preserve the context of a client request in the
cached object:

sub vcl_backend_response {
 set beresp.http.x-url = bereq.url;
}

sub vcl_deliver {
 # The X-Url header is for internal use only
 unset resp.http.x-url;
}

Now imagine that you just changed a blog post template that requires all blog posts that have been
cached. For this you can issue a ban such as:

$ varnishadm ban 'obj.http.x-url ~ ^/blog'

Since it uses a lurker-friendly ban expression, the ban inserted in the ban-list will be gradually
evaluated against all cached objects until all blog posts are invalidated. The snippet below shows
how to insert the same expression into the ban-list in the vcl_recv subroutine:

sub vcl_recv {
 if (req.method == "BAN") {

 # Assumes the ``X-Ban`` header is a regex,
 # this might be a bit too simple.

 ban("obj.http.x-url ~ " + req.http.x-ban);
 return(synth(200, "Ban added"));
 }
}

Page 174 Chapter 9 Cache Invalidation

9.5 Exercise: Write a VCL program using purge and ban

• Write a VCL program that handles the PURGE and BAN HTTP methods.

• When handling the BAN method, use the request header fields req.http.x-ban-url and
req.http.x-ban-host

• Use Lurker-Friendly Bans

• To build further on this, you can also use the REFRESH HTTP method that fetches new content,
using req.hash_always_miss, which is explained in the next subsection

To test this exercise, you can use HTTPie:

http -p hH PURGE http://localhost/testpage
http -p hH BAN http://localhost/ 'X-Ban-Url: .*html$' \
 'X-Ban-Host: .*\.example\.com'
http -p hH REFRESH http://localhost/testpage

For information on cache invalidation in varnishtest, refer to the subsection Cache Invalidation in
varnishtest. If you need help, see Solution: Write a VCL program using purge and ban.

Chapter 9 Cache Invalidation Page 175

9.6 Force Cache Misses

• set req.hash_always_miss = true; in vcl_recv

• Causes Varnish to look the object up in cache, but ignore any copy it finds

• Useful way to do a controlled refresh of a specific object

• If the server is down, the cached object is left untouched

• Depending on the Varnish version, it might leave extra copies in the cache

• Useful to refresh slowly generated content

Setting a request in pass mode instructs Varnish to always ask a backend for content, without storing
the fetched object into cache. The vcl_purge removes old content, but what if the web server is
down?

Setting req.has_always_miss to true tells Varnish to look up the content in cache, but always
miss a hit. This means that Varnish first calls vcl_miss, then (presumably) fetches the content from
the backend, cache the updated object, and deliver the updated content.

The distinctive behavior of req.hash_always_miss occurs when the backend server is down or
unresponsive. In this case, the current cached object is untouched. Therefore, client requests that do
not enable req.hash_always_miss keep getting the old and untouched cached content.

Two important use cases for using req.hash_always_miss are when you want to: 1) control who
takes the penalty for waiting around for the updated content (e.g. a script you control), and 2) ensure
that content is not evicted before it is updated.

Note

Forcing cache misses do not evict old content. This means that causes Varnish to have
multiple copies of the content in cache. In such cases, the newest copy is always used. Keep in
mind that duplicated objects will stay as long as their time-to-live is positive.

Page 176 Chapter 9 Cache Invalidation

9.7 Hashtwo/Xkey (Varnish Software Implementation of
Surrogate Keys)

• Hashtwo or xkey are the Varnish Software's implementation of surrogate keys

• Hashtwo is available in Varnish Cache Plus 3.x and 4.0 only

• Xkey is open source and is available in Varnish Cache 4.1 or later

• Cache invalidation based on cache tags

• Adds patterns easily to be matched against

• Highly scalable

The idea is that you can use any arbitrary string for cache invalidation. You can then key your cached
objects on, for example, product ID or article ID. In this way, when you update the price of a certain
product or a specific article, you have a key to evict all those objects from the cache.

So far, we have discussed purges and bans as methods for cache invalidation. Two important
distinctions between them is that purges remove a single object (with its variants), whereas bans
perform cache invalidation based on matching expressions. However, there are cases where none of
these mechanisms are optimal.

Hashtwo/xkey creates a second hash key to link cached objects based on cache tags. This hash keys
provide the means to invalidate cached objects with common cache tags.

In practice, hashtwo/xkey create cache invalidation patterns, which can be tested and invalidated
immediately just as purges do. In addition, hashtwo/xkey is much more efficient than bans because of
two reasons: 1) looking up hash keys is much more efficient than traversing ban-lists, and 2) every
time you test a ban expression, it checks every object in the cache that is older than the ban itself.

The hashtwo and xkey VMOD are pre-built for supported versions and can be installed using regular
package managers from the Varnish Software repositories. Once your repository is properly
configured, as indicated in Solution: Install Varnish, issue the following commands to install the
hashtwo VMOD:

On Debian or Ubuntu:

apt-get install libvmod-hashtwo

On Red Hat Enterprise Linux:

yum install libvmod-hashtwo

Finally, you can use this VMOD by importing it in your VCL code:

import hashtwo;

Chapter 9 Cache Invalidation Page 177

Xkey is a part of varnish-modules https://github.com/varnish/varnish-modules. For installation and
usage details, please refer to its own documentation
https://github.com/varnish/varnish-modules/blob/master/docs/vmod_xkey.rst.

Tip

The xkey VMOD has a softpurge function as well.

Page 178 Chapter 9 Cache Invalidation

https://github.com/varnish/varnish-modules
https://github.com/varnish/varnish-modules/blob/master/docs/vmod_xkey.rst

9.7.1 Example Using Hashtwo or Xkey

• Use case: E-commerce site

• Same logic for hashtwo and xkey

• HTTP response header from web page containing three products: 8155054, 166412 and
234323:

HTTP/1.1 200 OK
Server: Apache/2.2.15
X-HashTwo: 8155054
X-HashTwo: 166412
X-HashTwo: 234323

• HTTP request header to purge pages containing product 166412:

GET / HTTP/1.1
Host: www.example.com
X-HashTwo-Purge: 166412

• VCL example code for hashtwo:

import hashtwo;

sub vcl_recv {
 if (req.http.X-HashTwo-Purge) {
 if (hashtwo.purge(req.http.X-HashTwo-Purge) != 0) {
 return (purge);
 } else {
 return (synth(404, "Key not found"));
 }
 }
}

On an e-commerce site the backend application adds the X-HashTwo HTTP header field for every
product that is included in a web page. The header for a certain page might look like the one above.
If you use xkey instead of hashtwo, you should rename that header so you do not get confused.

Normally the backend is responsible for setting these headers. If you were to do it in VCL, it will look
something like this:

sub vcl_backend_response {
 set beresp.http.X-HashTwo = "secondary_hash_key";
}

In the VCL code above, the hashtwo key to be purged is the value in the X-HashTwo-Purge HTTP
header. In order to keep the web pages in sync with the database, you can set up a trigger in your

Chapter 9 Cache Invalidation Page 179

database. In that way, when a product is updated, an HTTP request towards Varnish is triggered. For
example, the request above invalidates every cached object with the matching hashtwo header in
hashtwo.purge(req.http.X-HashTwo-Purge) or xkey.purge(req.http.X-Key-Purge) for
the xkey VMOD.

After purging, Varnish should respond something like:

HTTP/1.1 200 Purged
Date: Thu, 24 Apr 2014 17:08:28 GMT
X-Varnish: 1990228115
Via: 1.1 Varnish

The objects are now cleared.

Warning

You should protect purges with ACLs from unauthorized hosts.

Page 180 Chapter 9 Cache Invalidation

10 Saving a Request
This chapter is for the system administration course only

Table 19: Connotation of Saving a Request

Rescue Economization Protection

Directors x x

Health Checks x

Grace Mode x x

Retry a Request x

Saint Mode x

Tune Backend Properties x

Access Control Lists (ACL) x

Compression X

Varnish offers many mechanisms to save a request. By saving a request we mean:

1. Rescue: mechanisms to handle requests when backends are in problematic situations.

2. Economization: mechanisms to spend less resources, i.e., send less requests to the backend.

3. Protection: mechanisms to restrict access cache invalidation from unauthorized entities.

Table 19 shows how different mechanisms are mapped to their saving meaning. This chapter
explains how to make your Varnish setup more robust by using these mechanisms.

Chapter 10 Saving a Request Page 181

10.1 Directors

• Loadable VMOD

• Contains 1 or more backends

• All backends must be known

• Selection methods:

• round-robin

• fallback

• random

• seeded with a random number

• seeded with a hash key

Round-robin director example:

vcl 4.0;

import directors; // load the directors VMOD

backend one {
 .host = "localhost";
 .port = "80";
}

backend two {
 .host = "127.0.0.1";
 .port = "81";
}

sub vcl_init {
 new round_robin_director = directors.round_robin();
 round_robin_director.add_backend(one);
 round_robin_director.add_backend(two);

 new random_director = directors.random();
 random_director.add_backend(one, 10); # 2/3 to backend one
 random_director.add_backend(two, 5); # 1/3 to backend two
}

sub vcl_recv {
 set req.backend_hint = round_robin_director.backend();
}

Page 182 Chapter 10 Saving a Request

Varnish can have several backends defined, and it can set them together into clusters for load
balancing purposes. Backend directors, usually just called directors, provide logical groupings of
similar web servers by re-using previously defined backends. A director must have a name.

There are several different director selection methods available, they are: random, round-robin,
fallback, and hash. The next backend to be selected depends on the selection method. The simplest
directors available are the round-robin and the random director.

A round-robin director takes only a backend list as argument. This director type picks the first
backend for the first request, then the second backend for the second request, and so on. Once the
last backend have been selected, backends are selected again from the top. If a health probe has
marked a backend as sick, a round-robin director skips it.

A fallback director will always pick the first backend unless it is sick, in which case it would pick the
next backend and so on. A director is also considered a backend so you can actually stack directors.
You could for instance have directors for active and passive clusters, and put those directors behind
a fallback director.

Random directors are seeded with either a random number or a hash key. Next section explains their
commonalities and differences.

Note

Health probes are explain in the Health Checks section.

Note

Directors are defined as loadable VMODs in Varnish 4. See the vmod_directors man page
for more information.

Warning

If you declare backend servers, but do not use them, varnishd returns error by default. You
can avoid this situation by turning off the runtime parameter vcc_err_unref. However, this
practice is strongly discouraged. Instead, we advise to declare only what you use.

Chapter 10 Saving a Request Page 183

10.1.1 Random Directors

• Random director: seeded with a random number

• Hash director: seeded with hash key typically from a URL or a client identity string

Hash director that uses client identity for backend selection

sub vcl_init {
 new h = directors.hash();
 h.add_backend(one, 1); // backend 'one' with weight '1'
 h.add_backend(two, 1); // backend 'two' with weight '1'
}

sub vcl_recv {
 // pick a backend based on the cookie header of the client
 set req.backend_hint = h.backend(req.http.cookie);
}

The random director picks a backend randomly. It has one per-backend parameter called weight,
which provides a mechanism for balancing the selection of the backends. The selection mechanism
of the random director may be regarded as traffic distribution if the amount of traffic is the same per
request and per backend. The random director also has a director-wide counter called retries,
which increases every time the director selects a sick backend.

Both, the random and hash director select a backend randomly. The difference between these two is
the seed they use. The random director is seeded with a random number, whereas the hash director
is seeded with a hash key.

Hash directors typically use the requested URL or the client identity (e.g. session cookie) to compute
the hash key. Since the hash key is always the same for a given input, the output of the hash director
is always the same for a given hash key. Therefore, hash directors always select the same backend
for a given input. This is also known as sticky session load balancing. You can learn more about sticky
sessions in https://www.varnish-software.com/blog/proper-sticky-session-load-balancing-varnish.

Hash directors are useful to load balance in front of other Varnish caches or other web accelerators.
In this way, cached objects are not duplicated across different cache servers.

Note

In Varnish 3 there is a client director type, which is removed in Varnish 4. This client director
type is a special case of the hash director. Therefore, the semantics of a client director type are
achieved using hash.backend(client.identity).

Page 184 Chapter 10 Saving a Request

https://www.varnish-software.com/blog/proper-sticky-session-load-balancing-varnish

10.2 Health Checks

• Poke your web server every N seconds

• Affects backend selection

• std.healthy(req.backend_hint)

• Set using .probe

• Varnish allows at most .threshold amount of failed probes within a set of the last .window
probes

• varnishlog: Backend_health

backend server1 {
 .host = "server1.example.com";
 .probe = {
 .url = "/healthtest";
 .timeout = 1s;
 .interval = 4s;
 .window = 5;
 .threshold = 3;
 }
}

You can define a health check for each backend. A health check defines a probe to verify whether a
backend replies on a given URL every given interval.

The above example causes Varnish to send a request to http://server1.example.com/healthtest every
4 seconds. This probe requires that at least 3 requests succeed within a sliding window of 5 request.

Varnish initializes backends marked as sick. .initial is another variable of .probe. This variable
defines how many times the probe must succeed to mark the backend as healthy. The .initial
default value is equal to .threshold – 1.

When Varnish has no healthy backend available, it attempts to use a graced copy of the cached
object that a request is looking for. The next section Grace Mode explains this concept in detail.

You can also declare standalone probes and reuse them for several backends. It is particularly useful
when you use directors with identical behaviors, or when you use the same health check procedure
across different web applications.

import directors;

probe www_probe {
 .url = "/health";
}

backend www1 {
 .host = "localhost";

Chapter 10 Saving a Request Page 185

http://server1.example.com/healthtest

 .port = "8081";
 .probe = www_probe;
}

backend www2 {
 .host = "localhost";
 .port = "8082";
 .probe = www_probe;
}

sub vcl_init {
 new www = directors.round_robin();
 www.add_backend(www1);
 www.add_backend(www2);
}

Note

Varnish does not send a Host header with health checks. If you need that, you can define an
entire request using .request instead of .url.

backend one {
 .host = "example.com";
 .probe = {
 .request =
 "GET / HTTP/1.1"
 "Host: www.foo.bar"
 "Connection: close";
 }
}

Note

The healthy function is implemented as VMOD in Varnish 4. req.backend.healthy from
Varnish 3 is replaced by std.healthy(req.backend_hint). Do not forget to include the
import line: import std;

Page 186 Chapter 10 Saving a Request

10.2.1 Analyzing health probes

• Backend_health tag in varnishlog -g raw -i Backend_health

varnishlog -g raw -i Backend_health
0 Backend_health - default Still healthy 4--X-RH 5 3 5 0.012166 0.013693 HTTP/1.0 200 OK

• varnishadm debug.health in Varnish 4.0 or varnishadm backend.list -p in Varnish 4.1:

Backend default is Healthy
Current states good: 5 threshold: 3 window: 5
Average responsetime of good probes: 0.016226
Oldest Newest
==
44--44----444444444444 Good IPv4
XX--XX----XXXXXXXXXXXX Good Xmit
RR--RR----RRRRRRRRRRRR Good Recv
HH--HH----HHHHHHHHHHHH Happy

• varnishadm backend.list:

Backend name Refs Admin Probe
default(127.0.0.1,,8081) 1 probe Healthy 4/5

Every health test is recorded in the shared memory log with 0 VXID (see Transactions). If you want to
see Backend_health records in varnishlog, you have to change the default grouping by XVID to
raw:

varnishlog -g raw -i Backend_health

Backend_health records are led by 0, which is the VXID number. The rest of the probe record is in
the following format:

Backend_health - %s %s %s %u %u %u %f %f %s
 | | | | | | | | |
 | | | | | | | | +- Probe HTTP response
 | | | | | | | +---- Average response time
 | | | | | | +------- Response time
 | | | | | +---------- Probe window size
 | | | | +------------- Probe threshold level
 | | | +---------------- Number of good probes in window
 | | +------------------- Probe window bits
 | +---------------------- Status message
 +------------------------- Backend name

Most of the fields are self-descriptive, but we clarify next the Probe window bits and Status message.

The Probe window bits field details the last probe with the following format:

Chapter 10 Saving a Request Page 187

%c %c %c %c %c %c %c
| | | | | | |
| | | | | | +- H -- Happy
| | | | | +---- R -- Good Received (response from the backend received)
| | | | +------- r -- Error Received (no response from the backend)
| | | +---------- X -- Good Xmit (Request to test backend sent)
| | +------------- x -- Error Xmit (Request to test backend not be sent)
| +---------------- 6 -- Good IPv6
+------------------- 4 -- Good IPv4

Status message is a two word state indicator, which can be:

• Still healthy

• Back healthy

• Still sick

• Went sick

Note that Still indicates unchanged state, Back and Went indicate a change of state. The second
word, healthy or sick, indicates the present state.

Another method to analyze health probes is by calling varnishadm debug.health in Varnish 4.0
or varnishadm backend.list -p in Varnish 4.1. This command presents first data from the last
Backend_health log:

Backend default is Healthy
Current states good: 5 threshold: 3 window: 5
Average responsetime of good probes: 0.016226

and the last 64 window bits of probes:

Oldest Newest
==
44--44----444444444444 Good IPv4
XX--XX----XXXXXXXXXXXX Good Xmit
RR--RR----RRRRRRRRRRRR Good Recv
HH--HH----HHHHHHHHHHHH Happy

Page 188 Chapter 10 Saving a Request

10.2.2 Demo: Health Probes
See the power of health probes!

Suggested steps for the demo:

1. Configure a probe as shown in Health Checks.

2. For Varnish 4.0, run watch -n.5 "varnishadm debug.health" in one terminal

3. For Varnish 4.1, run watch -n.5 "varnishadm backend.list -p" in one terminal

4. Start and stop your backend For this, you might want to simulate very quickly a backend with
the command python -m SimpleHTTPServer [port].

5. The watch command makes the effect of an animated health prober!

Chapter 10 Saving a Request Page 189

10.3 Grace Mode

• A graced object is an object that has expired, but is kept in cache for a given grace time

• Grace mode is when Varnish uses a graced object

• Grace mode is a feature to mitigate the accumulation of requests for expired objects

• Grace mode allows Varnish to build responses from expired objects

• beresp.grace defines the time that Varnish keeps an object after beresp.ttl has elapsed

The main goal of grace mode is to avoid requests to pile up whenever a popular object has expired in
cache. To understand better grace mode, recall Figure 2 which shows the lifetime of cached objects.
When possible, Varnish delivers a fresh object, otherwise Varnish builds a response from a stale
object and triggers an asynchronous refresh request. This procedure is also known as
stale-while-revalidate.

The typical way to use grace is to store an object for several hours after its TTL has elapsed. In this
way, Varnish has always a copy to be delivered immediately, while fetching a new object
asynchronously. This asynchronous fetch ensures that graced objects do not get older than a few
seconds, unless there are no available backends.

The following VCL code illustrates a typical use of grace:

sub vcl_hit {
 if (obj.ttl >= 0s) {
 # Normal hit
 return (deliver);
 } elsif (std.healthy(req.backend_hint)) {
 # The backend is healthy
 # Fetch the object from the backend
 return (fetch);
 } else {
 # No fresh object and the backend is not healthy
 if (obj.ttl + obj.grace > 0s) {
 # Deliver graced object
 # Automatically triggers a background fetch
 return (deliver);
 } else {
 # No valid object to deliver
 # No healthy backend to handle request
 # Return error
 return (synth(503, "Backend is down"));
 }
 }
}

Graced objects are those with a grace time that has not yet expired. The grace time is stored in
obj.grace, which default is 10 seconds. You can change this value by three means:

Page 190 Chapter 10 Saving a Request

1. by parsing the HTTP Cache-Control field stale-while-revalidate that comes from the
backend,

2. by setting the variable beresp.grace in VCL, or

3. by changing the grace default value with varnishadm param.set default_grace <value>.

Varnish 4.1 parses stale-while-revalidate automatically from the Cache-Control header
field. For example, when receiving
"Cache-Control: max-age=5, stale-while-revalidate=30", Varnish 4.1 sets obj.ttl=5
and obj.grace=30 automatically. To see a working example on how Varnish works with
Cache-Control, see the VTC in Understanding Grace using varnishtest.

Note

obj.ttl and obj.grace are countdown timers. Objects are valid in cache as long as they
have a positive remaining time equal to obj.ttl + obj.grace.

Chapter 10 Saving a Request Page 191

10.3.1 Timeline Example
Backend response HTTP Cache-Control header field:

"Cache-control: max-age=60, stale-while-revalidate=30"

or set in VCL:

set beresp.ttl = 60s;
set beresp.grace = 30s;

• 50s: Normal delivery

• 62s: Normal cache miss, but grace mode possible

• 80s: Normal cache miss, but grace mode possible

• 92s: Normal cache miss, object is removed from cache

In this timeline example, it is assumed that the object is never refreshed. If you do not want that
objects with a negative TTL are delivered, set beresp.grace = 0. The downside of this is that all
grace functionality is disabled, regardless any reason.

Page 192 Chapter 10 Saving a Request

10.3.2 Exercise: Grace

1. Copy the following CGI script in /usr/lib/cgi-bin/test.cgi:

#!/bin/sh
sleep 10
echo "Content-type: text/plain"
echo "Cache-control: max-age=10, stale-while-revalidate=20"
echo
echo "Hello world"
date

2. Make the script executable.

3. Issue varnishlog -i VCL_call,VCL_return in one terminal.

4. Test that the script works outside Varnish by typing
http http://localhost:8080/cgi-bin/test.cgi in another terminal.

5. Send a single request, this time via Varnish, to cache the response from the CGI script. This
should take 10 seconds.

6. Send three requests: one before the TTL (10 seconds) elapses, another after 10 seconds and
before 30 seconds, and a last one after 30 seconds.

7. Repeat until you understand the output of varnishlog.

8. Play with the values of max-age and stale-while-revalidate in the CGI script, and the
beresp.grace value in the VCL code.

With this exercise you should see that as long as the cached object is within its TTL, Varnish delivers
the cached object as normal. Once the TTL expires, Varnish delivers the graced copy, and
asynchronously fetches an object from the backend. Therefore, after 10 seconds of triggering the
asynchronous fetch, an updated object is available in the cache.

Chapter 10 Saving a Request Page 193

10.4 retry Return Action

• Available in vcl_backend_response and vcl_backend_error

• Re-enters vcl_backend_fetch

• Any changes made are kept

• Parameter max_retries safe guards against infinite loops

• Counter bereq.retries registers how many retries are done

sub vcl_backend_response {
 if (beresp.status == 503) {
 return (retry);
 }
}

The retry return action is available in vcl_backend_response and vcl_backend_error. This
action re-enters the vcl_backend_fetch subroutine. This only influences the backend thread, the
client-side handling is not affected.

You may want to use this action when the backend fails to respond. In this way, Varnish can retry the
request to a different backend. For this, you must define multiple backends.

You can use directors to let Varnish select the next backend to try. Alternatively, you may use
bereq.backend to specifically select another backend.

return (retry) increments the bereq.retries counter. If the number of retries is higher than
max_retries, control is passed to vcl_backend_error.

Note

In Varnish 3.0 it is possible to do return (restart) after the backend response failed. This
is now called return (retry), and jumps back up to vcl_backend_fetch.

Page 194 Chapter 10 Saving a Request

10.5 Saint Mode

• Saint mode is implemented as a backend director with the following capabilities:

• Fine-grained health checks; maintains a blacklist of relations between objects and
backends

• Objects have a blacklist TTL

• Backends in the blacklist have a threshold of related objects

• Backends with objects below the threshold can be selected to serve other objects

• Backends with objects above the threshold are marked as sick for all objects

• Available in Varnish Cache 4.1 or later

Saint mode complements regular Health Checks by marking backend sicks for specific object. Saint
mode is a VMOD that maintains a blacklist of objects and related backends. Each blacklisted object
has a TTL, which denotes the time it stays in the blacklist.

If the number of blacklisted objects for a backend are below a threshold, the backend is considered
partially sick. Requests for blacklisted objects might be sent to another backend. When the number
of blacklisted objects for a backend exceeds a threshold, the backend is marked as sick for all
requests.

vcl/saintmode.vcl below is typical usage of saint mode. In this example, a request with a 500
response status would be retried to another backend.

vcl4.0;

import saintmode;
import directors;

backend server1 { .host = "192.0.2.11"; .port = "80"; }
backend server2 { .host = "192.0.2.12"; .port = "80"; }

sub vcl_init {
 # create two saint mode backends with threshold of 5 blacklisted objects
 new sm1 = saintmode.saintmode(server1, 5);
 new sm2 = saintmode.saintmode(server2, 5);

 # group the backends in the same cluster
 new fb = directors.fallback();
 fb.add_backend(sm1.backend());
 fb.add_backend(sm2.backend());
}

sub vcl_backend_fetch {
 # get healthy backend from director

Chapter 10 Saving a Request Page 195

 set bereq.backend = fb.backend();
}

sub vcl_backend_response {
 if (beresp.status > 500) {
 # the failing backend is blacklisted 5 seconds
 saintmode.blacklist(5s);
 # retry request in a different backend
 return (retry);
 }
}

An alternative is to build the response with a stale object. For that, you would return(abandon),
restart the request in vcl_synth, check for req.restarts in vcl_recv. To get a better idea on
how to do it, please take a look the stale-if-error snippet in
https://github.com/fgsch/vcl-snippets/blob/master/v4/stale-if-error.vcl.

The fine-grained checks of saint mode help to spot problems in malfunctioning backends. For
example, if the request for the object foo returns 200 OK HTTP response without content
(Content-Length = 0), you can blacklist that specific object for that specific backend. You can also
print the object with std.log and filter it in varnishlog.

Note

For more information, please refer to its own documentation in
https://github.com/varnish/varnish-modules/blob/master/docs/vmod_saintmode.rst.

Page 196 Chapter 10 Saving a Request

https://github.com/fgsch/vcl-snippets/blob/master/v4/stale-if-error.vcl
https://github.com/varnish/varnish-modules/blob/master/docs/vmod_saintmode.rst

10.6 Tune Backend Properties

backend default {
 .host = "localhost";
 .port = "80";
 .connect_timeout = 0.5s;
 .first_byte_timeout = 20s;
 .between_bytes_timeout = 5s;
 .max_connections = 50;
}

If a backend has not enough resources, it might be advantageous to set max_connections. So that
a limited number of simultaneous connections are handled by a specific backend. All
backend-specific timers are available as parameters and can be overridden in VCL on a
backend-specific level.

Tip

Varnish only accepts hostnames for backend servers that resolve to a maximum of one IPv4
address and one IPv6 address. The parameter prefer_ipv6 defines which IP address
Varnish prefer.

Chapter 10 Saving a Request Page 197

10.7 Access Control Lists (ACLs)

• An ACL is a list of IP addresses

• VCL programs can use ACLs to define and control the IP addresses that are allowed to purge,
ban, or do any other regulated task.

• Compare with client.ip or server.ip

Who is allowed to purge....
acl local {
 "localhost"; /* myself */
 "192.168.1.0"/24; /* and everyone on the local network */
 !"192.168.1.23"; /* except for the dialin router */
}

sub vcl_recv {
 if (req.method == "PURGE") {
 if (client.ip ~ local) {
 return (purge);
 } else {
 return (synth(405));
 }
 }
}

An Access Control List (ACL) declaration creates and initializes a named list of IP addresses and
ranges, which can later be used to match client or server IP addresses. ACLs can be used for
anything. They are typically used to control the IP addresses that are allowed to send PURGE or ban
requests, or even to avoid the cache entirely.

You may also setup ACLs to differentiate how your Varnish servers behave. You can, for example,
have a single VCL program for different Varnish servers. In this case, the VCL program evaluates
server.ip and acts accordingly.

ACLs are fairly simple to create. A single IP address or hostname should be in quotation marks, as
"localhost". ACL uses the CIDR notation to specify IP addresses and their associated routing
prefixes. In Varnish's ACLs the slash "/" character is appended outside the quoted IP address, for
example "192.168.1.0"/24.

To exclude an IP address or range from an ACL, and exclamation mark "!" should precede the IP
quoted address. For example !"192.168.1.23". This is useful when, for example, you want to
include all the IP address in a range except the gateway.

Page 198 Chapter 10 Saving a Request

Warning

If you declare ACLs, but do not use them, varnishd returns error by default. You can avoid
this situation by turning off the runtime parameter vcc_err_unref. However, this practice is
strongly discouraged. Instead, we advise to declare only what you use.

Chapter 10 Saving a Request Page 199

10.8 Compression

• Where to compress? backend or Varnish?

• Parameter to toggle: http_gzip_support

• VCL variable beresp.do_gzip to zip and beresp.do_gunzip to unzip

sub vcl_backend_response {
 if (beresp.http.content-type ~ "text") {
 set beresp.do_gzip = true;
 }
}

• Avoid compressing already compressed files

• Works with ESI

It is sensible to compress objects before storing them in cache. Objects can be compressed either at
the backend or your Varnish server, so you have to make the decision on where to do it. Factors that
you should take into consideration are:

• where to store the logic of what should be compressed and what not

• available CPU resources

Also, keep in mind that files such as JPEG, PNG, GIF or MP3 are already compressed. So you should
avoid compressing them again in Varnish.

By default, http_gzip_support is on, which means that Varnish follows the behavior described in
https://www.varnish-cache.org/docs/trunk/phk/gzip.html and
https://www.varnish-cache.org/docs/trunk/users-guide/compression.html. If you want to have full
control on what is compressed and when, set the http_gzip_support parameter to off, and
activate compression based on specific rules in your VCL code. Implement these rules in
vcl_backend_response and then set beresp.do_gzip or beresp.do_gunzip as the example
above.

If you compose your content using Edge Side Includes (ESI), you should know that ESI and gzip work
together. Next chapter explains how to compose your content using Varnish and Edge Side Includes
(ESI).

Note

Compression in Varnish uses and manipulates the Accept-Encoding and
Content-Encoding HTTP header fields. Etag validation might also be weakened. Refer to
https://www.varnish-cache.org/docs/trunk/phk/gzip.html and
https://www.varnish-cache.org/docs/trunk/users-guide/compression.html for all details about
compression.

Page 200 Chapter 10 Saving a Request

https://www.varnish-cache.org/docs/trunk/phk/gzip.html
https://www.varnish-cache.org/docs/trunk/users-guide/compression.html
https://www.varnish-cache.org/docs/trunk/phk/gzip.html
https://www.varnish-cache.org/docs/trunk/users-guide/compression.html

Chapter 10 Saving a Request Page 201

11 Content Composition
This chapter is for the web-developer course only

This chapter teaches you how to glue content from independent sources into one web page.

• Cookies and how to work with them

• Edge Side Includes (ESI) and how to compose a single client-visible page out of multiple objects

• Combining ESI and Cookies

• AJAX and masquerading AJAX requests through Varnish

Page 202 Chapter 11 Content Composition

11.1 A Typical Website
Most websites follow a pattern: they have easily distinguishable parts:

• A front page

• Articles or sub-pages

• A login-box or "home bar"

• Static elements, like CSS, JavaScript and graphics

To truly utilize Varnish to its full potential, start by analyzing the structure of the website. Ask
yourself this:

• What makes web pages in your server different from each other?

• Does the differences apply to entire pages, or only parts of them?

• How can I let Varnish to know those differences?

Beginning with the static elements should be easy. Previous chapters of this book cover how to
handle static elements. How to proceed with dynamic content?

An easy solution is to only cache content for users that are not logged in. For news-papers, that is
probably enough, but not for web-shops.

Web-shops re-use objects frequently. If you can isolate the user-specific bits, like the shopping cart,
you can cache the rest. You can even cache the shopping cart, if you tell Varnish when to change it.

The most important lessons is to start with what you know.

Chapter 11 Content Composition Page 203

11.2 Cookies

• Be careful when caching cookies!

• Cookies are frequently used to identify unique users, or user's choices.

• They can be used for anything from identifying a user-session in a web-shop to opting for a
mobile version of a web page.

• Varnish can handle cookies coming from two different sources:

• req.http.Cookie header field from clients

• beresp.http.Set-Cookie header field from servers

By default Varnish does not cache a page if req.http.Cookie or beresp.http.Set-Cookie are
present. This is for two main reasons: 1) to avoid littering the cache with large amount of copies of
the same content, and 2) to avoid delivering cookie-based content to a wrong client.

It is far better to either cache multiple copies of the same content for each user or cache nothing at
all, than caching personal, confidential or private content and deliver it to a wrong client. In other
words, the worst is to jeopardize users' privacy for saving backend resources. Therefore, it is strongly
advised to take your time to write a correct VCL program and test it thoroughly before caching
cookies in production deployments.

Despite cookie-based caching being discouraged, Varnish can be forced to cache content based on
cookies. If a client request contains req.http.Cookie, use return (hash); in vcl_recv. If the
cookie is a Set-Cookie HTTP response header field from the server, use return (deliver); in
vcl_backend_response.

Note

If you need to handle cookies, consider using the cookie VMOD from
https://github.com/lkarsten/libvmod-cookie. This VMOD handles cookies with convenient
parsing and formatting functions without the need of regular expressions.

Page 204 Chapter 11 Content Composition

https://github.com/lkarsten/libvmod-cookie

11.2.1 Vary and Cookies

• Used to cache content that varies on cookies

• By default, Varnish does not store responses when cookies are involved

• The Vary response header field can be used to store responses that are based on the value of
cookies

• Cookies are widely used, but not Vary: Cookie

Varnish uses a different hash value for each cached resource. Resources with several
representations, i.e. variations containing the Vary response header field, share the same hash
value in Varnish. Despite this common hash value, caching based on the Vary: Cookie response
header is not advised, because of its poor performance. For a more detailed explanation on Vary,
please refer to the Vary subsection.

Note

Consider using Edge Side Includes to let Varnish build responses that combine content with
and without cookies, i.e. combining caches and responses from the origin server.

Chapter 11 Content Composition Page 205

11.2.2 Best Practices for Cookies

• Remove all cookies that you do not need

• Organize the content of your web site in a way that let you easily determine if a page needs a
cookie or not. For example:

• /common/ -- no cookies

• /user/ -- has user-cookies

• /voucher/ -- has only the voucher-cookie

• etc.

• Add the req.http.Cookie request header to the cache hash by issuing
hash_data(req.http.cookie); in vcl_hash.

• Never cache a Set-Cookie header. Either remove the header before caching or do not cache
the object at all.

• To ensure that all cached pages are stripped of Set-Cookie, finish vcl_backend_response
with something similar to:

if (beresp.ttl > 0s) {
 unset beresp.http.Set-cookie;
}

Page 206 Chapter 11 Content Composition

11.2.3 Exercise: Handle Cookies with Vary and hash_data with HTTPie
In this exercise you have to use two cache techniques; first Vary and then hash_data(). The
exercise uses the Cookie header field, but the same rules apply to any other field. For that, prepare
the testbed and test with HTTPie:

1. Copy the file material/webdev/cookies.php to /var/www/html/cookies.php.

2. Send different requests in HTTPie changing /cookies.php and user=Alice for
/article.html and user=Bob, e.g.:

http -p hH http://localhost/cookies.php "Cookie: user=Alice"

Vary: Part 1:

1. Write a VCL program to force Varnish to cache client requests with cookies.

2. Send two client requests for the same URL; one for user Alice and one for user Bob.

3. Does Varnish use different backend responses to build and deliver the response to the client?

4. Make cookies.php send the Vary: Cookie response header field, then analyze the
response to the client.

5. Remove beresp.http.Vary in vcl_backend_response and see if Varnish still honors the Vary
header.

Vary: Part 2:

1. Purge the cached object for resource /cookies.php.

2. Check if it affects all, none or just one of the objects in cache (e.g: change the value of the cookie
and see if the PURGE method has purged all of them).

hash_data(): Part 1:

1. Write another VCL program or add conditions to differentiate requests handled by Vary and
hash_data().

2. Add hash_data(req.http.Cookie); in vcl_hash.

3. Check how multiple values of Cookie give individual cached objects.

hash_data(): Part 2:

1. Purge the cache again and check the result after using hash_data() instead of
Vary: Cookie.

This exercise is all about Vary and hash mechanisms. These mechanisms can also be tested and
learned through varnishtest. If you have time and curious enough, please do the Exercise: Handle
Cookies with Vary and hash_data() in varnishtest. After solving these exercises, you will understand
very well how Vary and hash_data(); work.

Chapter 11 Content Composition Page 207

11.3 Edge Side Includes

• What is ESI?

• How to use ESI?

• Testing ESI without Varnish

Figure 25: Web page assembling using ESI via Varnish

Edge Side Includes or ESI is a small markup language for dynamic web page assembly at the reverse
proxy level. The reverse proxy analyses the HTML code, parses ESI specific markup and assembles
the final result before flushing it to the client. Figure 26 depicts this process.

With ESI, Varnish can be used not only to deliver objects, but to glue them together. The most typical
use case for ESI is a news article with a most recent news box at the side. The article itself is most
likely written once and possibly never changed, and can be cached for a long time. The box at the
side with most recent news, however, changes frequently. With ESI, the article can include a most
recent news box with a different TTL.

When using ESI, Varnish fetches the news article from a web server, then parses the
<esi:include src="/url" /> ESI tag, and fetches the URL via a normal request. Either finding it
already cached or getting it from a web server and inserting it into cache.

The TTL of the ESI element can be 5 minutes while the article is cached for two days. Varnish delivers
the two different objects in one glued page. Thus, Varnish updates parts independently and makes
possible to combine content with different TTL.

Page 208 Chapter 11 Content Composition

11.3.1 Basic ESI usage
Enabling ESI in Varnish is simple enough:

sub vcl_backend_response {
 set beresp.do_esi = true;
}

To include a page in another, the <esi:include> ESI tag is used:

<esi:include src="/url" />

You can also strip off cookies per ESI element. This is done in vcl_recv.

Varnish only supports three ESI tags:

• <esi:include>: calls the page defined in the src attribute and replaces the ESI tag with the
content of src.

• <esi:remove>: removes any code inside this opening and closing tag.

• <!--esi ``(content) -->``: Leaves (content) unparsed. E.g., the following does not
process the <esi:include> tag:

<!--esi
 This ESI tag is not processed: <esi:include src="example">
-->

varnishtest is a useful tool to understand how ESI works. The subsection Understanding ESI in
varnishtest contains a Varnish Test Case (VTC) using ESI.

Note

Varnish outputs ESI parsing errors in varnishstat and varnishlog.

Chapter 11 Content Composition Page 209

11.3.2 Example: Using ESI
Copy material/webdev/esi-date.php to /var/www/html/. This file contains an ESI include tag:

<HTML>
<BODY>

<?php
header('Content-Type: text/plain');

print("This page is cached for 1 minute.\n");
echo "Timestamp: \n"
. date("Y-m-d H:i:s");
print("\n");
?>

<esi:include src="/cgi-bin/date.cgi"/>

</BODY>
</HTML>

Copy material/webdev/esi-date.cgi to /usr/lib/cgi-bin/. This file is a simple CGI that
outputs the date of the server:

#! /bin/sh

echo "Content-Type: text/plain"
echo ""
echo "ESI content is cached for 30 seconds."
echo "Timestamp: "
date "+%Y-%m-%d %H:%M:%S"

For ESI to work, load the following VCL code:

sub vcl_backend_response {
 if (bereq.url == "/esi-date.php") {
 set beresp.do_esi = true; // Do ESI processing
 set beresp.ttl = 1m; // Sets a higher TTL main object
 } elsif (bereq.url == "/cgi-bin/esi-date.cgi") {
 set beresp.ttl = 30s; // Sets a lower TTL on
 // the included object
 }
}

Then reload your VCL (see Table 6 for reload instructions) and issue the command
http http://localhost/esi-date.php. The output should show you how Varnish replaces the
ESI tag with the response from esi-date.cgi. Note the different TTLs from the glued objects.

Page 210 Chapter 11 Content Composition

11.3.3 Exercise: Enable ESI and Cookies

1. Use material/webdev/esi-top.php and material/webdev/esi-user.php to test ESI.

2. Visit esi-top.php and identify the ESI tag.

3. Enable ESI for esi-top.php in VCL and test.

4. Strip all cookies from esi-top.php and make it cache.

5. Let esi-user.php cache too. It emits Vary: Cookie, but might need some help.

See the suggested solutions of Exercise: Handle Cookies with Vary and hash_data() in varnishtest to
get an idea on how to solve this exercise. Try to avoid return (hash); in vcl_recv and
return (deliver); in vcl_backend_response as much as you can. This is a general rule to
make safer Varnish setups.

During the exercise, make sure you understand all the cache mechanisms at play. You can also try
removing the Vary: Cookie header from esi-user.php.

You may also want to try PURGE. If so, you have to purge each of the objects, because purging just
/esi-top.php does not purge /esi-user.php.

Chapter 11 Content Composition Page 211

11.3.4 Testing ESI without Varnish

• Test ESI Using JavaScript to fill in the blanks.

During development of different web pages to be ESI-glued by Varnish, you might not need Varnish
all the time. One important reason for this, is to avoid caching during the development phase. There
is a solution based on JavaScript to interpret ESI syntax without having to use Varnish at all. You can
download the library at the following URL:

• http://www.catalystframework.org/calendar/static/2008/esi/ESI_Parser.tar.gz

Once downloaded, extract it in your code base, include esiparser.js and include the following
JavaScript code to trigger the ESI parser:

$(document).ready(function () { do_esi_parsing(document); });

Page 212 Chapter 11 Content Composition

http://www.catalystframework.org/calendar/static/2008/esi/ESI_Parser.tar.gz

11.4 Masquerading AJAX requests

This works This does not work

With AJAX it is not possible by default to send requests across another domain. This is a security
restriction imposed by browsers. If this represents an issue for your web pages, you can be easily
solve it by using Varnish and VCL.

Chapter 11 Content Composition Page 213

11.4.1 Exercise: write a VCL that masquerades XHR calls
material/webdev/ajax.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/jquery/1.4/jquery.min.js">
 </script>
 <script type="text/javascript">
 function getNonMasqueraded()
 {
 $("#result").load("http://www.google.com/robots.txt");
 }

 function getMasqueraded()
 {
 $("#result").load("/masq/robots.txt");
 }
 </script>
 </head>
 <body>
 <h1>Cross-domain Ajax</h1>

 Test a non masqueraded cross-domain request

 Test a masqueraded cross-domain request

 <h1>Result</h1>
 <div id="result"></div>
 </body>
</html>

Use the provided ajax.html page. Note that function getNonMasqueraded() fails because the
origin is distinct to the google.com domain. Function getMasqueraded() can do the job if a
proper VCL code handles it. Write the VCL code that masquerades the Ajax request to
http://www.google.com/robots.txt.

If you need help, see Solution: Write a VCL that masquerades XHR calls.

Page 214 Chapter 11 Content Composition

12 Varnish Plus Software Components
The Varnish Plus offer of software products includes:

• Varnish Massive Storage Engine (MSE) described in Storage Backends,

• Hashtwo (Varnish Software Implementation of Surrogate Keys) described in Hashtwo/Xkey
(Varnish Software Implementation of Surrogate Keys),

• Varnish Tuner

• Varnish Administration Console (VAC),

• Varnish Custom Statistics (VCS),

• Varnish High Availability (VHA),

• SSL/TLS frontend support with hitch,

• and more.

For more information about the complete Varnish Plus offer and their documentation, please visit:

• https://www.varnish-software.com/what-is-varnish-plus

• https://www.varnish-software.com/resources/

Chapter 12 Varnish Plus Software Components Page 215

https://www.varnish-software.com/what-is-varnish-plus
https://www.varnish-software.com/resources/

12.1 Varnish Administration Console (VAC)

• Single point of control for simultaneous administration of multiple Varnish Cache servers

• VAC provides:

• GUI

• API

• Super Fast Purger

• VAC has its own documentation

The Varnish Administration Console (VAC) consists of a GUI and an API. VAC is most commonly used
in production environments where real-time graphs and statistics help identify bottlenecks and
issues within Varnish Cache servers. VAC is a management console for groups of Varnish Cache
servers, also known as cache groups. A cache group is a collection of Varnish Cache servers that have
identical configuration. Attributes on a cache group includes:

• One or more Varnish Cache servers

• Active Varnish Configuration Language (VCL) file

• Homogeneous parameter configuration across all servers in a group

VAC distributes and store VCL files for you. A parameter set is a list of Varnish cache parameters.
These parameters can be applied to one or more cache groups simultaneously, as long as all cache
groups consist of cache servers of the same version.

VAC ships with a JSON-based RESTful API to integrate your own systems with the VAC. All actions
performed via the user interface can be replicated with direct access to the API. This includes
fetching all real-time graph data.

The Super Fast Purger is a high performance cache invalidation delivery mechanism for multiple
installations of Varnish. Super Fast Purger is capable of distributing purge requests to cache groups
across data centers via the Restful interface. Super Fast Purger uses HMAC as security mechanism to
protect your purge requests and thus ensure data integrity.

In order to install VAC on either Debian/Ubuntu or Red Hat Enterprise, one would require access to
the Varnish Plus Software repository. As a Varnish Plus customer, you have access to the installation
guide document. This document has instructions to install, configure, maintain, and troubleshoot
your VAC installation If you have any questions on how to set up your repository or where to obtain
the VAC installation guide, please ask the instructor or send us an email to
support@varnish-software.com.

Figures 26, Figures 27 and Figures 28 show screenshots of the GUI. You may also be interested in
trying the VAC demo at https://vacdemo.varnish-software.com. The instructor of the course provides
you the credentials.

Page 216 Chapter 12 Varnish Plus Software Components

mailto:support@varnish-software.com
https://vacdemo.varnish-software.com

12.1.1 Overview Page of the Varnish Administration Console

Figure 26: Overview page of the Varnish Administration Console

Chapter 12 Varnish Plus Software Components Page 217

12.1.2 Configuration Page of the Varnish Administration Console

Figure 27: Configuration page of the Varnish Administration Console

Page 218 Chapter 12 Varnish Plus Software Components

12.1.3 Banning Page of the Varnish Administration Console

Figure 28: Banning page of the Varnish Administration Console

Chapter 12 Varnish Plus Software Components Page 219

12.2 Varnish Custom Statistics (VCS)

• Data stream management system (DSMS) for your Varnish servers

• Real-time statistics engine to aggregate, display and analyze user web traffic

• Provides an API to retrieve statistics

• Provides a GUI that presents lists and charts to get a quick overview of the key metrics that
matters you

Figure 29: VCS Data Flow

Varnish Custom Statistics (VCS) is our data stream management system (DSMS) implementation for
Varnish. VCS allows you to analyze the traffic from multiple Varnish servers in near real-time to
compute traffic statistics and detect critical conditions. This is possible by continuously extracting
transactions with the vcs-key tags in your VSL. Thus, VCS does not slow down your Varnish servers.

You can add as many custom vcs-key tags as you need in your VCL code. This allows you to define
your own metrics.

VCS can be used to produce statistical data or even apply complex event processing techniques.
Thus, VCS offers endless opportunities for tracking all aspects of websites' behavior. Typical cases
include:

• A/B testing

• Measuring click-through rate

• Track slow pages and cache misses

• Analyze what is "hot" right now in a news website

• Track changes in currency conversions in e-commerce

• Track changes in Stock Keeping Units (SKUs) <behavior in e-commerce

• Track number of unique consumers of HLS/HDS/DASH video streams

Page 220 Chapter 12 Varnish Plus Software Components

VCS is a great tool when you want to test some functionality in your backend. For that, you can
separate your requests into different groups, handle their requests accordingly, analyze the results
and conclude whether your new functionality should be applied to all groups. This type of tests are
called A/B testing. If you want to learn how to implement A/B testing in Varnish, please refer to
https://www.varnish-software.com/blog/live-ab-testing-varnish-and-vcs.

Figure 31 and Figure 32 are screenshots of the VCS GUI. These screenshots are from the demo on
http://vcsdemo.varnish-software.com. Your instructor can provide you credential for you to try the
demo online.

Note

For further details on VCS, please look at its own documentation at
https://www.varnish-software.com/resources/.

Chapter 12 Varnish Plus Software Components Page 221

https://www.varnish-software.com/blog/live-ab-testing-varnish-and-vcs
http://vcsdemo.varnish-software.com
https://www.varnish-software.com/resources/

12.2.1 VCS Data Model

• Represents a finite relation from an infinite stream.

• Uses time-based tumbling windows

• API to query data model

• API outputs in JSON and JSONP format

Table 20: Data model in VCS

vcs-key example.com example.com

timestamp 2013-09-18T09:58:00 2013-09-18T09:58:30

n_req 84 76

n_req_uniq NaN NaN

n_miss 0 1

avg_restart 0.000000 0.000000

n_bodybytes 12264 10950

ttfb_miss NaN 0.000440

ttb_hit 0.000048 0.000054

resp_1xx 0 0

resp_2xx 84 76

resp_3xx 0 0

resp_4xx 0 0

resp_5xx 0 0

reqbytes 8 6

respbytes 32 29

berespbytes 30 27

bereqbytes 9 7

VCS uses the time-based tumbling windows technique to segment the data stream into finite parts.
These windows are created based on the vcs-key tag that you specify in your VCL code. Each
window aggregates the data within a configurable period of time.

Table 20 shows the data model in VCS. This table is basically a representation of two windows seen
as two records in a conventional database. In this example, data shows two windows of 30 seconds
based on the example.com vcs-key. For presentation purposes in this page, the distribution of
this table is of a database that grows from left to right.

The VCS data model has the following fields:

Page 222 Chapter 12 Varnish Plus Software Components

vcs-key

common key name for transactions making this record
timestamp

Timestamp at the start of the window
n_req

Number of requests
n_req_uniq

Number of unique requests, if configured
n_miss

Number of backend requests (i.e. cache misses) Number of hits can be calculated as
n_hit = n_req - n_miss

avg_restart

Average number of VCL restarts triggered per request
n_bodybytes

Total number of bytes transferred for the response bodies
ttfb_miss

Average time to first byte for requests that ended up with a backend request
ttb_hit

Average time to first byte for requests that were served directly from varnish cache
resp_1xx -- resp_5xx

Counters for response status codes.
reqbytes

Number of bytes received from clients.
respbytes

Number of bytes transmitted to clients.
berespbytes

Number of bytes received from backends.
bereqbytes

Number of bytes transmitted to backends.

You can think of each window as a record of a traditional database that resides in memory. This
database is dynamic, since the engine of VCS updates it every time a new window (record) is
available. VCS provides an API to retrieve this data from the table above in JSON format:

{
 "example.com": [
 {
 "timestamp": "2013-09-18T09:58:30",
 "n_req": 76,
 "n_req_uniq": "NaN",
 "n_miss": 1,

Chapter 12 Varnish Plus Software Components Page 223

 "avg_restarts": 0.000000,
 "n_bodybytes": 10950,
 "ttfb_miss": 0.000440,
 "ttfb_hit": 0.000054,
 "resp_1xx": 0,
 "resp_2xx": 76,
 "resp_3xx": 0,
 "resp_4xx": 0,
 "resp_5xx": 0,
 ...
 },
 {
 "timestamp": "2013-09-18T09:58:00",
 "n_req": 84,
 "n_req_uniq": "NaN",
 "n_miss": 0,
 "avg_restarts": 0.000000,
 "n_bodybytes": 12264,
 "ttfb_miss": "NaN",
 "ttfb_hit": 0.000048,
 "resp_1xx": 0,
 "resp_2xx": 84,
 "resp_3xx": 0,
 "resp_4xx": 0,
 "resp_5xx": 0,
 ...
 },

 ...
]
}

Page 224 Chapter 12 Varnish Plus Software Components

12.2.2 VCS API

• API provides ready-to-use queries

• Queries over HTTP

• Top-most sorting

• Results in JSON and JSONP format

Examples:

For vcs-key with names ending with .gif, retrieve a list of the top 10:

/match/(.*)%5C.gif$/top

Find a list of the top 50 slowest backend requests:

/all/top_ttfb/50

The VCS API queries the VCS data model and the output is in JSON format. The API responds to
requests for the following URLs:
/key/<vcs-key>

Retrieves stats for a single vcs-key. <vcs-key> name must be URL encoded.
/match/<regex>

Retrieves a list of vcs-key matching the URL encoded regular-expression. Accepts the query
parameter verbose=1, which displays all stats collected for the <vcs-keys> matched.

/all

Retrieves a list of all the <vcs-keys> currently in the data model.

For /match/<regex> and /all, VCS can produce sorted lists. For that, you can append one of the
following sorting commands.
/top

Sort based on number of requests.
/top_ttfb

Sort based on the ttfb_miss field.
/top_size

Sort based on the n_bodybytes field.
/top_miss

Sort based on the n_miss field.
/top_respbytes

Sort based on number of bytes transmitted to clients.
/top_reqbytes

Sort based on number of bytes received from clients.

Chapter 12 Varnish Plus Software Components Page 225

/top_berespbytes

Sort based on number of bytes fetched from backends.
/top_bereqbytes

Sort based on number of bytes transmitted to backends.
/top_restarts

Sort based on the avg_restarts field.
/top_5xx, /top_4xx, ..., /top_1xx

Sort based on number of HTTP response codes returned to clients for 5xx, 4xx, 3xx, etc.
/top_uniq

Sort based on the n_req_uniq field.

Further, a /k parameter can be appended, which specifies the number of keys to include in the top
list. If no k value is provided, the top 10 is displayed.

Note

For installation instructions, please refer to
http://files.varnish-software.com/pdfs/installation-guide_vcs-latest.pdf. Once you have
installed all necessary components, take a look at the man pages of vstatd and
vstatdprobe for more documentation.

Page 226 Chapter 12 Varnish Plus Software Components

http://files.varnish-software.com/pdfs/installation-guide_vcs-latest.pdf

12.2.3 Screenshots of GUI

• VCS provides its own GUI

• You can interact with the API via this GUI

• Screenshots from http://vcsdemo.varnish-software.com/

Figure 30: Header of Varnish Custom Statistics

Figure 31: Summary of metrics with time based graphs

Chapter 12 Varnish Plus Software Components Page 227

http://vcsdemo.varnish-software.com/

12.3 Varnish High Availability (VHA)

• Content replicator

• Increases resiliency and performance

• Two-server, circular, multi-master replication

• Requests to replicate content against Varnish servers, not the backend

Figure 32: VHA Sequence Diagram

The Varnish High Availability agent (vha-agent) is a content replicator with the aim of copying the
cached objects from an origin Varnish server to a neighboring Varnish server. This increases
resiliency and performance, specially when backend traffic surges.

vha-agent reads the log of Varnish, and for each object insertion detected it fires a request to the
neighboring Varnish server. This server fetches the object from the origin Varnish server. As a result,
the same object is cached in both servers with only one single backend fetch.

This solution requires vha-agent to be installed on the origin Varnish server, and some simple VCL
configuration on the replicated Varnish server. Ideally, vha-agent is installed on both servers so they
can both replicate object insertions from each other in an active/active configuration.

Typical uses of VHA include:

• Business critical Varnish installations

• Any multi-cache Varnish setup

• Multi node CDN POP installations

The replication of cached objects may bring the need for multiple cache invalidation. For that
purpose, you can use the Varnish Administration Console (VAC). Remember: you should define the
rules on how to invalidate cached objects before caching them in production environments.

Page 228 Chapter 12 Varnish Plus Software Components

12.4 SSL/TLS frontend support with hitch

• Varnish supports SSL/TLS encryption

• Backend encryption in Varnish Cache Plus

• Client encryption in Varnish Cache Plus 4.1 with hitch

• Hitch: network proxy that terminates SSL/TLS connections and forwards the unencrypted traffic

• Configuration file: /etc/hitch/hitch.conf

• Configure Varnish to listen to PROXY requests in /etc/varnish/varnish.params

Backend encryption is useful for deployments with geographically distributed origin servers such as
CDNs. Varnish supports SSL/TLS encryption to secure communication on both: backend and
frontend. SSL/TLS configuration for connections between Varnish and the backend is described in
Exercise: Configure Varnish.

Varnish Plus allows you to encrypt and decrypt frontend connections without third-party solutions.
For this purpose, Varnish Plus provides hitch. Following are the steps to configure Varnish to accept
SSL/TLS connections.

1. Install hitch:

$ yum install hitch

2. Create a key .pem file:

$ /etc/pki/tls/certs/make-dummy-cert your-cdn.pem

For the purposes of this book, we create a dummy key and certification file concatenated in the
.pem file. See https://github.com/varnish/hitch/blob/master/docs/certificates.md for alternative
methods.

3. Configure hitch in /etc/hitch/hitch.conf:

frontend = "[*]:443"
backend = "[127.0.0.1]:6081"
pem-file = "/path/to/your-cdn.pem"
ciphers = "EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH"
prefer-server-ciphers = off
ssl-engine = ""
workers = 1
backlog = 100
keepalive = 3600
chroot = ""
user = "hitch"
group = "hitch"
quiet = off

Chapter 12 Varnish Plus Software Components Page 229

https://github.com/varnish/hitch
https://github.com/varnish/hitch/blob/master/docs/certificates.md

syslog = on
syslog-facility = "daemon"
daemon = on
write-ip = off
write-proxy-v1 = on
write-proxy-v2 = off
proxy-proxy = off
sni-nomatch-abort = off

4. If your server is behind a firewall, ensure it can accept HTTPS connections.

5. In /etc/varnish/varnish.params, configure Varnish Plus to listen to PROXY requests on
port 6081:

DAEMON_OPTS="-a :6081,PROXY"

6. Start hitch:

$ service hitch start

At the moment of writing this text, service hitch start did not output starting errors. You
should check whether hitch has started, if not, try the following command to debug:

$ /usr/sbin/hitch --pidfile=/run/hitch/hitch.pid \
--config=/etc/hitch/hitch.conf

Note

Hitch has its own documentation at https://github.com/varnish/hitch

Page 230 Chapter 12 Varnish Plus Software Components

https://github.com/varnish/hitch

13 Appendix A: Resources
Community driven:

• https://www.varnish-cache.org

• https://www.varnish-cache.org/docs

• http://repo.varnish-cache.org

• https://www.varnish-cache.org/trac/wiki/VCLExamples

• Public mailing lists: https://www.varnish-cache.org/trac/wiki/MailingLists

• Public IRC channel: #varnish at irc.linpro.no

Commercial:

• https://www.varnish-software.com/resources

• http://planet.varnish-cache.org

• https://www.varnish-software.com

• http://repo.varnish-software.com (for service agreement customers)

• support@varnish-software.com (for existing customers, with SLA)

• sales@varnish-software.com

Chapter 13 Appendix A: Resources Page 231

https://www.varnish-cache.org
https://www.varnish-cache.org/docs
http://repo.varnish-cache.org
https://www.varnish-cache.org/trac/wiki/VCLExamples
https://www.varnish-cache.org/trac/wiki/MailingLists
https://www.varnish-software.com/resources
http://planet.varnish-cache.org
https://www.varnish-software.com
http://repo.varnish-software.com
mailto:support@varnish-software.com
mailto:sales@varnish-software.com

14 Appendix B: Varnish Programs
Varnish Shared memory Log (VSL) tools:

• varnishlog

• varnishncsa

• varnishhist

• varnishtop

Administration:

• varnishadm

Global counters:

• varnishstat

Design and debug:

• varnishtest

varnishlog, varnishadm and varnishstat are explained in the Examining Varnish Server's
Output chapter. Next sections explain varnishtop, varnishncsa, and varnishhist.

Page 232 Chapter 14 Appendix B: Varnish Programs

14.1 varnishtop

$varnishtop -i BereqURL,RespStatus

list length 5 trusty-amd64

 7.20 RespStatus 200
 5.26 RespStatus 404
 0.86 BereqURL /test.html
 0.68 BereqURL /
 0.39 BereqURL /index.html

• Group tags and tag-content by frequency

varnishtop groups tags and their content together to generate a sorted list of the most frequently
appearing tag/tag-content pair. This tool is sometimes overlooked, because its usefulness is visible
after you start filtering. The above example lists status codes that Varnish returns.

Two of the perhaps most useful variants of varnishtop are:

• varnishtop -i BereqURL: creates a list of URLs requested at the backend. Use this to find
out which URL is the most requested.

• varnishtop -i RespStatus: lists what status codes Varnish returns to clients.

You may also combine taglist as in the above example. Even more, you may apply Query Language
-q options. For example, varnishtop -q 'respstatus > 400' shows you counters for
responses where client seem to have erred.

Some other possibly useful examples are:

• varnishtop -i ReqUrl: displays what URLs are most frequently requested from clients.

• varnishtop -i ReqHeader -C -I 'User-Agent:.*Linux.*': lists User-Agent headers
that contain the ignoring case Linux string. This example is useful for Linux users, since most
web browsers in Linux report themselves as Linux.

• varnishtop -i RespStatus: lists status codes received in clients from backends.

• varnishtop -i VCL_call: shows what VCL functions are used.

• varnishtop -i ReqHeader -I Referrer shows the most common referrer addresses.

Chapter 14 Appendix B: Varnish Programs Page 233

14.2 varnishncsa

10.10.0.1 - - [24/Aug/2008:03:46:48 +0100] "GET \
http://www.example.com/images/foo.png HTTP/1.1" 200 5330 \
"http://www.example.com/" "Mozilla/5.0"

If you already have tools in place to analyze NCSA Common log format, varnishncsa can be used
to print the VSL in this format. varnishncsa dumps everything pointing to a certain domain and
subdomains.

Filtering works similar to varnishlog.

Page 234 Chapter 14 Appendix B: Varnish Programs

14.3 varnishhist

1:1, n = 71 localhost

 #
 #
 #
 #
 ##
 ###
 ###
 ###
 ###
 ###
 | ###
 | ###
 | | ###
 |||| ### #
 |||| #### #
 |##|##### # # # # #
+-------+-------+-------+-------+-------+-------+-------+-------+-------
|1e-6 |1e-5 |1e-4 |1e-3 |1e-2 |1e-1 |1e0 |1e1 |1e2

The varnishhist utility reads the VSL and presents a continuously updated histogram showing the
distribution of the last n requests. varnishhist is particularly useful to get an idea about the
performance of your Varnish Cache server and your backend.

The horizontal axis shows a time range from 1e-6 (1 microsecond) to 1e2 (100 seconds). This time
range shows the internal processing time of your Varnish Cache server and the time it takes to
receive a response from the backend. Thus, this axis does not show the time perceived at the client
side, because other factors such as network delay may affect the overall response time.

Hits are marked with a pipe character ("|"), and misses are marked with a hash character ("#"). These
markers are distributed according to the time taken to process the request. Therefore, distributions
with more markers on the left side represent a faster performance.

When the histogram grows in vertical direction more than what the terminal can display, the 1:m
rate changes on the left top corner. Where m represent the number of times that each marker is
found. On the right top corner, you can see the name of the host.

Chapter 14 Appendix B: Varnish Programs Page 235

14.4 Exercise: Try varnishstat, varnishlog and
varnishhist

• Send a few requests to Varnish using http -p hH http://localhost/

• verify you have some cached objects using varnishstat

• look at the communication with the clients, using varnishlog. Try sending various headers
and see them appear in varnishlog.

• Install siege

• Run siege against localhost while looking at varnishhist

Page 236 Chapter 14 Appendix B: Varnish Programs

14.5 varnishtest

• Script driven program used to test the configuration of Varnish, run regression tests, and
develop VMODs

• Useful for system administrators, web developers, and VMODs developers

Varnish is distributed with many utility programs. varnishtest is a script driven program that
allows you create client mock-ups, simulate transactions, fetch content from mock-up or real
backends, interact with your actual Varnish configuration and assert expected behaviors.

You can use varnishtest when configuring your Varnish installation, i.e., writing VCL code, or
developing VMODs. varnishtest has its own language: the Varnish Test Case (VTC) language. This
language has a fairly simple syntax. In fact, when designing your caching algorithm or any other
functionality in Varnish, we recommend you first to write Varnish Case Tests (VTCs) as part of your
design. VTCs are also useful to reproduce bugs when filing a bug report.

There are many .vtc files included in Varnish Cache under bin/varnishtest/tests/. Think
about those files as a learning source. Further documentation of varnishtest is found in its man
page, bin/varnishtest/tests/README and
https://www.varnish-cache.org/docs/trunk/reference/varnishtest.html.

Chapter 14 Appendix B: Varnish Programs Page 237

https://www.varnish-cache.org/docs/trunk/reference/varnishtest.html

14.5.1 The Varnish Test Case (VTC) Language

• Test against simulated or real backends

• Starts real instance of varnishd

• Simulates clients

• Asserts using expect

b00001.vtc

varnishtest "Varnish as Proxy"

server s1 {
 rxreq
 txresp
} -start

varnish v1 -arg "-b ${s1_addr}:${s1_port}" -start

client c1 {
 txreq
 rxresp

 expect resp.http.via ~ "varnish"
} -run

varnishtest does not follow the unit testing framework (up/test/assert/tear down) nor
behavior-driven development (given/when/then). Depending on your use case, there might be test
preparations, executions and assertions all over the place. VTC is not compiled but simply
interpreted on the fly.

There is a naming convention for VTC files. Files starting with b as the example above contain basic
functionality tests. The naming scheme is in Varnish-Cache/bin/varnishtest/tests/README
or https://raw.githubusercontent.com/varnish/Varnish-Cache/master/bin/varnishtest/tests/README.

All VTC programs start by naming the test:

varnishtest "Varnish as Proxy"

In this example we declare a simulated origin server:

server s1 {
 rxreq
 txresp
} -start

All server declarations must start with s. In the code above, s1 receives a request rxreq, and
transmits a response txresp. -start boots s1 and makes available the macros ${s1_addr} and

Page 238 Chapter 14 Appendix B: Varnish Programs

https://raw.githubusercontent.com/varnish/Varnish-Cache/master/bin/varnishtest/tests/README

${s1_port} with the IP address and port of your simulated backend. You may also start a
declaration at a later point in your code, for example server s1 -start.

To declare an instance of your real Varnish server:

varnish v1 -arg "-b ${s1_addr}:${s1_port}" -start

varnish v1 declares an instance of your real Varnish server, i.e., varnishd. The names for Varnish
servers must start with v. This instance is controlled by the manager process, and -start forks a
child, which is the actual cacher process. You will learn about the manager and cacher in The Parent
Process: The Manager and The Child Process: The Cacher sections.

There are many ways to configure varnishd. On way is by passing arguments with -arg as in
-arg "-b ${s1_addr}:${s1_port}". -b is a varnishd option to define the backend. In this
case, we use the IP address and port of the simulated backend s1, but you can also use a real
backend. Therefore, varnishtest can be used as integration tool when testing your real backend.

There are other ways to define backends. The most common one is perhaps by defining them in
your VCL code, as we shall see in the next section.

To simulate a client:

client c1 {
 txreq
 rxresp

 expect resp.http.via ~ "varnish"
} -run

Simulated clients in varnishtest start with c. In this example, c1 transmits one request and
receives one response.

Since Varnish is a proxy, we expect to receive the response from the backend via Varnish. Therefore,
c1 expects varnish in the via HTTP header field. We use tilde ~ as match operator of regular
expressions because the exact text in resp.http.via depends on the Varnish version you have
installed.

Finally, you start client c1 with the -run command.

Chapter 14 Appendix B: Varnish Programs Page 239

14.5.2 Synchronization in Varnish Tests

• Varnish is a multi-threaded program

• Use -wait as synchronization mechanism

• -run: -start -wait

You might have noticed that we used -start for v1, but -run for c1. The difference between
these commands is that -run executes -start -wait.

Varnish is a multi-threaded program. Therefore, each instance in varnishtest, i.e., s1, v1 and c1,
is executed by a different thread. Sometimes, you will need some sort of synchronization mechanism
to ensure you avoid race conditions or other non-intuitive behaviors. For those cases, you can use
the -wait command.

-wait tells the executor of varnishtest to wait for a given instance to complete before
proceeding to the next instruction in your VTC program. To illustrate this, see the difference
between:

varnishtest "Synchronized"

server s1 {
 rxreq
 txresp
}

server s1 -start

client c1 -connect ${s1_sock} {
 txreq
 rxresp
}

-run: -start - wait
client c1 -run

server s1 -wait

and:

varnishtest "Unsynchronized"

server s1 {
 rxreq
 txresp
}

server s1 -start -wait

Page 240 Chapter 14 Appendix B: Varnish Programs

client c1 -connect ${s1_sock} {
 txreq
 rxresp
}

client c1 -run

The second test fails in comparison to the first one, because varnishtest times out while waiting
for s1 to receive a request and transmit a response. Therefore, you typically start Varnish servers
with the -start command, but start clients with the -run command.

Note

You will learn more about the Threading Model of Varnish in its own section.

Note

Note that we do not instantiate a Varnish server in the examples, but connect the client
directly to the server. For that purpose we use ${s1_sock}. This macro translates to the IP
address and port of s1.

Chapter 14 Appendix B: Varnish Programs Page 241

14.5.3 Running Your Varnish Test Cases

$varnishtest b00001.vtc
top TEST b00001.vtc passed (1.458)

To run your test, you simply issue the command above. By default, varnishtest outputs the
summary of passed tests, and a verbose output for failed tests only. If you want to always get a
verbose output, run varnishtest with the -v option.

A passed test means that you have the most basic Varnish configuration correct in the testbed
varnishtest. In the next section we explain how to configure Varnish in the way you normally
would do after your tests have passed or when the varnishtest testbed is not enough for your
needs.

There is much more to explain about varnishtest, but before that, you must learn more about the
fundamentals of Varnish. We will introduce new concepts and make a more advanced use of
varnishtest as we progress in the book.

Page 242 Chapter 14 Appendix B: Varnish Programs

14.5.4 Exercise: Test Apache as Backend with varnishtest

• Use VTC to test the Server and Via HTTP header fields.

In this exercise you have to define a backend pointing to your Apache server and use assertions with
expect. If you need help, take a look at Solution: Test Apache as Backend with varnishtest.

Chapter 14 Appendix B: Varnish Programs Page 243

14.5.5 Setting Parameters in varnishtest
vtc/b00003.vtc

varnishtest "Setting Parameters"

varnish v1 -arg "-b ${bad_ip}:9080"

Good enough when you are sure that the value is well formatted
and in a valid range:
varnish v1 -cli "param.set default_ttl 50"

Setting parameters and asserting correct return status:
varnish v1 -cliok "param.set default_ttl 100"
varnish v1 -clierr "200" "param.set default_ttl 150"
varnish v1 -clierr "106" "param.set default_ttl -1"

Bad test:
varnish v1 -cli "param.set default_ttl -1"

Expecting wrong return status. Tests should fail:
varnish v1 -cliok "param.set default_ttl -1"
varnish v1 -clierr "106" "param.set default_ttl 20"
varnish v1 -clierr "200" "param.set default_ttl -1"

Parameters can also be set in varnishtest. To execute commands via the CLI, you have three
options: -cli "command", -cliok "command" and -clierr "status" "command". -cli
executes a command without checking the return status. -clickok executes a command and
expects it to return OK 200 status. -clickerr executes a command and checks whether the
expected return status matches.

Note

You have to instruct varnishtest to assert the expected behavior as much as you can. For
example, varnish v1 -cli "param.set default_ttl -1" does not fail because -cli
does not assert the return status.

Note

The macro ${bad_ip} translates to 192.0.2.255. This IP address is for test use only, and it is
used here because we do not need a backend to set parameters in Varnish. However, we
must always declare at least one backend when varnishd is to be started.

Page 244 Chapter 14 Appendix B: Varnish Programs

Note

Note that we do not start v1, because in this example, we do not need to start the cacher
process.

Chapter 14 Appendix B: Varnish Programs Page 245

14.5.6 Fetch Data with varnishtest
vtc/b00004.vtc

varnishtest "Age greater than 0"

server s1 {
 rxreq
 txresp
} -start

varnish v1 -arg "-b ${s1_addr}:${s1_port}" -start

client c1 {
 txreq
 rxresp

 delay 1

 txreq
 rxresp

 expect resp.http.Age == 1
} -run

You can use the delay command in varnishtest. The unit of the command are seconds and it
also accepts float numbers. For more information about the Age response header field refer to the
Age subsection.

The Age value depends on the time to live (TTL) value of the cached object. We will learn more about
it in The Initial Value of beresp.ttl section.

Page 246 Chapter 14 Appendix B: Varnish Programs

14.5.7 Understanding Expires in varnishtest
b00008.vtc

varnishtest "Expired objects"

server s1 {
 rxreq
 txresp -hdr "Date: Thu, 01 Jan 2015 00:00:00 GMT" \
 -hdr "Expires: Thu, 01 Jan 2015 00:00:01 GMT"

} -start

varnish v1 -vcl+backend { } -start

varnish v1 -cliok "param.set default_grace 1"
varnish v1 -cliok "param.set default_keep 0" #default

client c1 {
 txreq
 rxresp
} -run

varnish v1 -expect n_expired == 0

delay 3

varnish v1 -expect n_expired == 1

In Varnish, an expired object is an object that has exceeded the TTL + grace + keep time. In the
example above, the Expires header field sets TTL to 1, and changes default_grace from 10 to
2. default_keep is already 0, but we show it explicitly anyway.

Tip

Take a look at s00000.vtc and s00001.vtc in
Varnish-Cache/bin/varnishtest/tests/.

Tip

To get more information about n_expire, issue man varnish-counters.

Chapter 14 Appendix B: Varnish Programs Page 247

14.5.8 Example of Transactions in varnishtest

$varnishtest -v b00001.vtc

(...)
**** v1 0.3 vsl| 0 CLI - Rd vcl.load "boot" (...)
(...)
**** v1 0.4 vsl| 1000 Begin c sess 0 HTTP/1
(...)
**** v1 0.4 vsl| 1002 Begin b bereq 1001 fetch
(...)
**** v1 0.4 vsl| 1002 End b
**** v1 0.4 vsl| 1001 Begin c req 1000 rxreq
(...)
**** v1 0.4 vsl| 1001 End c
(...)
**** v1 0.4 vsl| 1000 End c
(...)
**** v1 0.5 vsl| 0 CLI - EOF on CLI connection (...)

Above is a snippet of how Varnish logs are displayed in varnishtest. varnishtest does not
group logs by default as varnishlog does. Still, varnishtest allows you to group the
transactions for assertions with the command logexpect.

varnishtest starts client transactions in 1000. Note the VXID 0 for Varnish specific records.

Page 248 Chapter 14 Appendix B: Varnish Programs

14.5.9 logexpect

• Allows you to assert log records

• Uses varnishlog API

varnishtest "Assert in VSL"

server s1 {
 rxreq
 txresp
} -start

varnish v1 -arg "-b ${s1_addr}:${s1_port}" -start

logexpect l1 -v v1

logexpect l1 {
 expect * * ReqURL /favicon.ico
} -start

client c1 {
 txreq -url "/favicon.ico"
 rxresp
} -run

logexpect l1 -wait

logexpect is a program that uses the varnishlog API. Therefore, it is able to group and query the
Varnishlog just as varnishlog does. In addition, logexpect allows you to assert what you are
expecting to appear in VSL.

Note logexpect l1 -wait at the end of the script. Without it, the test would finish successfully
without concluding the assert in l1, because varnishtest would not wait for it. -wait instructs
the executor of varnishtest to wait until l1 is done.

Below is the synopsis of arguments and options of logexpect:

-v <varnish-instance>
-d <0|1> (head/tail mode)
-g <grouping-mode>
-q <query>

vsl arguments (vsl_arg.c)
-b Only display backend records
-c Only display client records
-C Caseless regular expressions
-i <taglist> Include tags

Chapter 14 Appendix B: Varnish Programs Page 249

-I <[taglist:]regex> Include by regex
-L <limit> Incomplete transaction limit
-T <seconds> Transaction end timeout

logexpect lN -v <id> [-g <grouping>] [-d 0|1] [-q query] [vsl arguments] {
 expect <skip> <vxid> <tag> <regex>
}

skip: [uint|*] Max number of record to skip
vxid: [uint|*|=] vxid to match
tag: [tagname|*|=] Tag to match against
regex: regular expression to match against (optional)
*: Match anything
=: Match value of last successfully matched record

Page 250 Chapter 14 Appendix B: Varnish Programs

14.5.10 Exercise: Assert Counters in varnishtest

• Write a Varnish test to check the counters for cache misses, cache hits, and number of cached
objects.

• Use cache_miss, cache_hit, and n_object counters respectively.

If you need help, take a look at Solution: Assert Counters in varnishtest.

Chapter 14 Appendix B: Varnish Programs Page 251

14.5.11 Understanding Vary in varnishtest
vtc/c00002.vtc

varnishtest "Test Vary functionality"

server s1 {
 # Backend VXID=1002
 rxreq
 expect req.url == "/same-url"
 expect req.http.foobar == "1"
 txresp -hdr "Vary: Foobar" -hdr "Snafu: 1" -body "1111\n"

 # Backend VXID=1004
 rxreq
 expect req.url == "/same-url"
 expect req.http.foobar == "2"
 txresp -hdr "Vary: Foobar" -hdr "Snafu: 2" -body "2222\n"
} -start

varnish v1 -vcl+backend {} -start

client c1 {
 txreq -url "/same-url" -hdr "Foobar: 1"
 rxresp
 expect resp.status == 200
 # First client request with VXID=1001
 # Request misses. Creates backend request with VXID=1002
 expect resp.http.X-Varnish == "1001"
 expect resp.http.snafu == "1"
 expect resp.body == "1111\n"

 txreq -url "/same-url" -hdr "Foobar: 2"
 rxresp
 expect resp.status == 200
 # Client request with VXID=1003
 # Request misses. Creates backend request with VXID=1004
 expect resp.http.X-Varnish == "1003"
 expect resp.http.snafu == "2"
 expect resp.body == "2222\n"

 txreq -url "/same-url" -hdr "Foobar: 1"
 rxresp
 expect resp.status == 200
 # Client request with VXID=1005
 # Request hits cached object created in VXID=1002
 expect resp.http.X-Varnish == "1005 1002"
 expect resp.http.snafu == "1"

Page 252 Chapter 14 Appendix B: Varnish Programs

 expect resp.body == "1111\n"
} -run

In c00002.vtc, c1 requests /same-url three times. Since the backend s1 returns
Vary: Foobar, Varnish maps the cached object to both req.url and http.foobar. Therefore,
the second request misses the cached object and fetches from s1 a new variation mapped to
Foobar: 2.

The third request from c1 matches both req.url and http.foobar values from the first request.
Thus, this request does not trigger a backend request.

Recall that X-Varnish contains the transaction ID of the client request and if applicable, the ID of
the backend transaction that stored the object delivered. You can see this behavior in the third
request. That also means that the VXID counting does not increase to 1006 in the third client
request.

If your backend returns Vary:, it must also handle situations when clients do not send the request
header to identify a variation. For example, when c1 does not send Footbar::

txreq -url "/same-url"
rxresp

your backend should handle the lack of that header field specifically. You can test it as the following
assertion shows:

rxreq
expect req.http.foobar == <undef>
txresp -hdr "Vary: Foobar" -hdr "Snafu: 3" -body "3333\n"

Be aware that the lack of a header field sent by a client is not the same as sending the field with an
empty value. Therefore, requests like:

txreq -hdr "Foobar: "

should be handled in your backend specifically. You can test it as:

rxreq
expect req.http.foobar == ""
txresp -hdr "Vary: Foobar" -hdr "Snafu: 4" -body "4444\n"

c00002.vtc is a modified version for teaching purposes from
Varnish-Cache/bin/varnishtest/tests/c00004.vtc. We advise you to look at the many tests
included in Varnish-Cache.

Next we cover four important header fields used in conditional requests. Two validator fields: ETag
and Last-Modified; and two precondition header fields: If-None-Match and
If-Modified-Since.

Chapter 14 Appendix B: Varnish Programs Page 253

14.5.12 Understanding Last-Modified and If-Modified-Since in
varnishtest

vtc/b00007.vtc

varnishtest "Test Backend IMS"

server s1 {
 # Request 1
 rxreq
 txresp -hdr "Last-Modified: Wed, 11 Sep 2013 13:36:55 GMT" \
 -body "Geoff Rules"
 # Request 2
 rxreq
 expect req.http.if-modified-since == "Wed, 11 Sep 2013 13:36:55 GMT"
 txresp -status 304
 # There will be no need to handle a third request in this example.
} -start

varnish v1 -vcl+backend {
 sub vcl_backend_response {
 set beresp.ttl = 2s;
 set beresp.grace = 5s;
 # beresp.was_304 is ``true`` if the response from the backend was
 # a positive result of a conditional fetch (``304 Not Modified``).
 set beresp.http.was-304 = beresp.was_304;
 }
} -start

client c1 {
 txreq
 rxresp
 expect resp.status == 200
 expect resp.body == "Geoff Rules"
 # this was not a conditional fetch
 expect resp.http.was-304 == "false"
} -run

delay 3

Age of object = 3 seconds. TTL has expired, but grace object
is delivered. Backend fetch in background is triggered
client c1 {
 txreq
 rxresp
 expect resp.status == 200
 expect resp.body == "Geoff Rules"
 expect resp.http.was-304 == "false"

Page 254 Chapter 14 Appendix B: Varnish Programs

} -run

delay 1

Age of object = 1 second. TTL is *not* expired. Fresh cached object
is delivered from previous backend fetch in background.
client c1 {
 txreq
 rxresp
 expect resp.status == 200
 expect resp.body == "Geoff Rules"
 expect resp.http.was-304 == "true"
} -run

The example above is a modified version of
Varnish-Cache/bin/varnishtest/tests/b00039.vtc and it shows the usage of
Last-Modified and If-Modified-Since header fields. The example introduces how to insert
VCL code in varnishtest:

sub vcl_backend_response {
 set beresp.ttl = 2s;
 set beresp.grace = 5s;
 # beresp.was_304 is ``true`` if the response from the backend was
 # a positive result of a conditional fetch (``304 Not Modified``).
 set beresp.http.was-304 = beresp.was_304;
}

You will learn all details about VCL in the following sections, but for now it is enough to understand
that this code sets the time to live TTL and grace time of cached objects to 2 and 5 seconds
respectively. Recall the object lifetime from Figure 2 to understand the expected behavior.

The code also adds a HTTP response header field was-304 with the boolean value of the
beresp.was_304. This variable is set to true if the response from the backend was a positive
result of a conditional fetch (304 Not Modified).

We hope that this exercise motivates you to use varnishtest when designing your cache policies.
As you can see, varnishtest is very precise when testing caching objects against different time
settings.

Note

beresp.was_304 is a variable available in Varnish 4.1

Chapter 14 Appendix B: Varnish Programs Page 255

14.5.13 Understanding Cache-Control in varnishtest
b00009.vtc

varnishtest "Understanding Cache-Control"

server s1 {
 rxreq
 txresp -hdr "Cache-control: max-age=3" -body "FOO"
 rxreq
 txresp -body "FOOBAR"
} -start

varnish v1 -vcl+backend { } -start

varnish v1 -cliok "param.set default_grace 0"
varnish v1 -cliok "param.set default_ttl 1"

client c1 {
 txreq
 rxresp
 expect resp.bodylen == 3
 delay 2
 txreq
 rxresp
 expect resp.bodylen == 3
} -run

The example above shows how Cache-control: max-age=3 overwrites TTL for cached objects.
The default TTL is 120 seconds, but we set it here to 1 just to explicitly show that the cached object
is not expired after a delay of 2 seconds, because max-age=3. Therefore, the second assert:

expect resp.bodylen == 3

is 3 but not 6 (size of FOOBAR).

If you are curious, you can remove:

-hdr "Cache-control: max-age=3"

from the first txresp, and you you will that the second request will contain a body length of 5.

Page 256 Chapter 14 Appendix B: Varnish Programs

Tip

Take a look at b00941.vtc, b00956.vtc and r01578.vtc in
Varnish-Cache/bin/varnishtest/tests/ to learn more.

Chapter 14 Appendix B: Varnish Programs Page 257

14.5.14 VCL in varnishtest
vtc/b00000.vtc:

varnish v1 -vcl {
 sub vcl_recv {
 if (req.url ~ "^/admin/"){
 return (pass);
 }
 }
} -start

varnishtest allows you to insert VCL code with the -vcl directive when declaring a Varnish
server. This VCL code is inserted above the subroutines in built-in code in
{varnish-source-code}/bin/varnishd/builtin.vcl. Since builtin.vcl already includes
vcl 4.0;, you do not need to add it in varnishtest.

Page 258 Chapter 14 Appendix B: Varnish Programs

14.5.15 PURGE in varnishtest
vtc/b00012.vtc

varnishtest "PURGE with acl"

server s1 {
 rxreq
 txresp -hdr "foo: 1"
 rxreq
 txresp -hdr "foo: 2"
} -start

varnish v1 -vcl+backend {
 acl purgers {
 "127.0.0.1";
 "192.168.0.0"/24;
 }
 sub vcl_recv {
 if (req.method == "PURGE") {
 if (!client.ip ~ purgers) {
 return (synth(405));
 }
 return (purge);
 }
 }
} -start

client c1 {
 txreq
 rxresp
 expect resp.http.foo == 1

 txreq
 rxresp
 expect resp.http.foo == 1

 txreq -req PURGE
 rxresp
 expect resp.msg == "Purged"
} -run

client c1 {
 txreq
 rxresp
 expect resp.http.foo == 2

} -run

Chapter 14 Appendix B: Varnish Programs Page 259

The example above is a modification of Varnish-Cache/bin/varnishtest/tests/b00036.vtc.
In this VTC you can see how the second request of c1 is constructed out from the cached object.
After purging the implicit resource /, the third request from c1 fetches a new object from s1.

A quick way for you to double check the acl authorization is by changing the IP address in it. So you
should see that the PURGE request coming from localhost will not pass the condition:

if (!client.ip ~ purgers)

Page 260 Chapter 14 Appendix B: Varnish Programs

14.5.16 Cache Invalidation in varnishtest

client c1 {
 txreq -req BAN
 rxres
} -run

You can send PURGE, BAN and REFRESH requests in varnishtest, so your VCL program acts
accordingly. Remember that you still need specify the requested URL in txreq if the URL is other
than root /. We advise you to search for purge and ban in
Varnish-Cache/bin/varnishtest/tests/ to learn more on how to invalidate caches.

Chapter 14 Appendix B: Varnish Programs Page 261

14.5.17 Understanding Grace using varnishtest
Varnish-Cache/bin/varnishtest/tests/b00043.vtc:

varnishtest "Test stale-while-revalidate"

server s1 {
 rxreq
 txresp -hdr "Cache-Control: max-age=30, stale-while-revalidate=30"
 rxreq
 txresp -hdr "Cache-Control: max-age=0, stale-while-revalidate=30"
 rxreq
 txresp -hdr "Cache-Control: max-age=30, stale-while-revalidate=30" \
 -hdr "Age: 40"
 rxreq
 txresp -status 500 \
 -hdr "Cache-Control: max-age=30, stale-while-revalidate=30"
} -start

varnish v1 -vcl+backend {
 sub vcl_backend_response {
 set beresp.http.grace = beresp.grace;
 set beresp.http.ttl = beresp.ttl;
 }
} -start

client c1 {
 txreq -url /1
 rxresp
 expect resp.http.grace == 30.000
 expect resp.http.ttl == 30.000

 txreq -url /2
 rxresp
 expect resp.http.grace == 30.000
 expect resp.http.ttl == 0.000

 txreq -url /3
 rxresp
 expect resp.http.grace == 30.000
 expect resp.http.ttl == -10.000

 txreq -url /4
 rxresp
 expect resp.http.grace == 10.000
 expect resp.http.ttl == 0.000
} -run

Page 262 Chapter 14 Appendix B: Varnish Programs

This example shows you how the HTTP response header field Cache-Control sets max-age to
ttl and stale-while-revalidate to grace. ttl and grace are attributes of cached objects.
The VCL code in v1 includes these attributes in the HTTP response header fields http.ttl and
http.grace that are sent to the client. c1 asserts the values of these fields.

Chapter 14 Appendix B: Varnish Programs Page 263

14.5.18 Exercise: Handle Cookies with Vary and hash_data() in
varnishtest

In this exercise you have to use two cache techniques; first Vary and then hash_data. The exercise
uses the Cookie header field, but the same rules apply to any other field.

Vary: Part 1:

1. Write a VTC program that forces Varnish to cache client requests with cookies.

2. Send two client requests for the same URL; one for user Alice and one for user Bob.

3. Does Varnish use different backend responses to build and deliver the response to the client?

4. Make the your simulated server send the Vary: Cookie response header field, then analyze
the response to the client.

5. Remove beresp.http.Vary in vcl_backend_response and see if Varnish still honors the Vary
header.

Vary: Part 2:

1. Purge the cached object for resource /cookies.php.

2. Check if it affects all, none or just one of the objects in cache (e.g: change the value of the cookie
and see if the PURGE method has purged all of them).

hash_data(): Part 1:

1. Write another VTC program or add conditions and asserts to differentiate requests handled by
Vary and hash_data().

2. Add hash_data(req.http.Cookie); in vcl_hash.

3. Check how multiple values of Cookie give individual cached objects.

hash_data(): Part 2:

1. Purge the cache again and check the result after using hash_data() instead of
Vary: Cookie.

This exercise is all about Vary and hash mechanisms. After this exercise, you should have a very
good idea on how Vary and hash_data() work. If you need help, see Solution: Handle Cookies
with Vary in varnishtest or Solution: Handle Cookies with hash_data() in varnishtest.

Page 264 Chapter 14 Appendix B: Varnish Programs

14.5.19 Understanding ESI in varnishtest
Varnish-Cache/bin/varnishtest/tests/e00004.vtc:

varnishtest "ESI commented include"

server s1 {
 rxreq
 txresp -body {
 <html>
 Before include
 <!--esi <esi:include src="/body"/> -->
 After include
 }
 rxreq
 expect req.url == "/body"
 txresp -body {
 Included file
 }
} -start

varnish v1 -vcl+backend {
 sub vcl_backend_response {
 set beresp.do_esi = true;
 }
} -start

client c1 {
 txreq
 rxresp
 expect resp.status == 200
 expect resp.bodylen == 67
}

client c1 -run
varnish v1 -expect esi_errors == 0

e00004.vtc shows how ESI substitution works. When Varnish reads
<!--esi <esi:include src="/body"/> -->, it triggers a request with URL /body. The result of
this request replaces the <!--esi --> tag.

Since there are two different requests, one for the root / resource and other for the /body
resource, you can handle their cached objects separately. For example, you can set different TTLs for
them or apply different invalidation policies.

We have counted the expected body length after the substitution and assert it in the VTC, but if you
do not trust us, you can easily see the replacement by executing:

varnishtest -v e00004.vtc | grep "chunk|"

Chapter 14 Appendix B: Varnish Programs Page 265

In the result:

**** c1 0.4 chunk| \n
**** c1 0.4 chunk| \t\t<html>\n
**** c1 0.4 chunk| \t\tBefore include\n
**** c1 0.4 chunk| \t\t
**** c1 0.4 chunk| \n
**** c1 0.4 chunk| \t\tIncluded file\n
**** c1 0.4 chunk| \t \n
**** c1 0.4 chunk| \t\tAfter include\n
**** c1 0.4 chunk| \t

you can see the HTML document after ESI has been processed.

Page 266 Chapter 14 Appendix B: Varnish Programs

15 Appendix C: Extra Material
This appendix contains code needed for some exercises.

Chapter 15 Appendix C: Extra Material Page 267

15.1 ajax.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/jquery/1.4/jquery.min.js">
 </script>
 <script type="text/javascript">
 function getNonMasqueraded()
 {
 $("#result").load("http://www.google.com/robots.txt");
 }

 function getMasqueraded()
 {
 $("#result").load("/masq/robots.txt");
 }
 </script>
 </head>
 <body>
 <h1>Cross-domain Ajax</h1>

 Test a non masqueraded cross-domain request

 Test a masqueraded cross-domain request

 <h1>Result</h1>
 <div id="result"></div>
 </body>
</html>

Page 268 Chapter 15 Appendix C: Extra Material

15.2 article.php

<?php
header("Cache-Control: must-revalidate, max-age=10");
$date = new DateTime();
$now = $date->format(DateTime::RFC2822);
?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head></head>
 <body>
 <h1>This article is cached for 10 seconds</h1>

 <h2>Cache timestamp: <?php echo $now; ?></h2>
 <a href="<?=$_SERVER['PHP_SELF']?>">Refresh this page
 </body>
</html>

Chapter 15 Appendix C: Extra Material Page 269

15.3 cookies.php

<?php
header('Content-Type: text/plain');

print("The following cookies have been received from the server\n");

foreach($_COOKIE as $name => $value)
 print("- ${name} : ${value}\n");
?>

Page 270 Chapter 15 Appendix C: Extra Material

15.4 esi-top.php

<?php
header('Content-Type: text/html');
header('Cache-Control: max-age=30, s-maxage=3600');
$date = new DateTime();
$now = $date->format(DateTime::RFC2822);
$setc = "";
if(isset($_POST['k']) and $_POST['k'] !== '' and
 isset($_POST['v']) and $_POST['v'] !== '') {
 $k=$_POST['k'];
 $v=$_POST['v'];
 $setc = "Set-Cookie: $k=$v";

 header("$setc");
 ?><meta http-equiv="refresh" content="1" />
 <h1>Refreshing to set cookie <?php print $setc; ?></h1><?php
}
?>
<html><head><title>ESI top page</title></head><body><h1>ESI Test page</h1>
<p>This is content on the top-page of the ESI page.
The top page is cached for 1 hour in Varnish,
but only 30 seconds on the client.</p>
<p>The time when the top-element was created:</p><h3>

<?php echo "$now"; ?>

<h1>Set a cookie:</h1><form action="/esi-top.php" method="POST">
Key: <input type="text" name="k">
Value: <input type="text" name="v">
<input type="submit"> </form>

</h3><p>The top page received the following Cookies:</p>

<?php

foreach($_COOKIE as $name => $value)
 print("${name} : ${value}\n");
?>

<table border="1"><tr><td><esi:include src="/esi-user.php" /></td></tr>
</table></body></html>

Chapter 15 Appendix C: Extra Material Page 271

15.5 esi-user.php

<?php
header('Content-Type: text/html');
header('Cache-Control: max-age=30, s-maxage=20');
header('Vary: Cookie');
$date = new DateTime();
$now = $date->format(DateTime::RFC2822);
?>
<p>This is content on the user-specific ESI-include. This part of
the page is cached in Varnish separately since it emits
a "Vary: Cookie"-header. We can not affect the client-cache of
this sub-page, since that is determined by the cache-control
headers on the top-element.</p>
<p>The time when the user-specific-element was created:</p><h3>

<?php echo "$now"; ?>

</h3><p>The user-specific page received the following Cookies:
</p>

<?php

foreach($_COOKIE as $name => $value)
 print("${name} : ${value}\n");
?>

Page 272 Chapter 15 Appendix C: Extra Material

Chapter 15 Appendix C: Extra Material Page 273

15.6 httpheadersexample.php

<?php
date_default_timezone_set('UTC');
define('LAST_MODIFIED_STRING', 'Sat, 09 Sep 2000 22:00:00 GMT');

// expires_date : 10s after page generation
$expires_date = new DateTime();
$expires_date->add(new DateInterval('PT10S'));

$headers = array(
 'Date' => date('D, d M Y H:i:s', time()),
);

if(isset($_GET['h']) and $_GET['h'] !== '')
{
 switch($_GET['h'])
 {
 case "expires" :
 $headers['Expires'] = toUTCDate($expires_date);
 break;

 case "cache-control":
 $headers['Cache-Control'] = "public, must-revalidate,
 max-age=3600, s-maxage=3600";
 break;

 case "cache-control-override":
 $headers['Expires'] = toUTCDate($expires_date);
 $headers['Cache-Control'] = "public, must-revalidate,
 max-age=2, s-maxage=2";
 break;

 case "last-modified":
 $headers['Last-Modified'] = LAST_MODIFIED_STRING;
 $headers['Etag'] = md5(12345);

 if(isset($_SERVER['HTTP_IF_MODIFIED_SINCE']) and
 $_SERVER['HTTP_IF_MODIFIED_SINCE'] ==
 LAST_MODIFIED_STRING) {
 header("HTTP/1.1 304 Not Modified");
 exit();
 }
 break;

 case "vary":
 $headers['Expires'] = toUTCDate($expires_date);

Page 274 Chapter 15 Appendix C: Extra Material

 $headers['Vary'] = 'User-Agent';
 break;
 }

 sendHeaders($headers);
}

function sendHeaders(array $headerList)
{
 foreach($headerList as $name => $value)
 {
 header("${name}: ${value}");
 }
}

function toUTCDate(DateTime $date)
{
 $date->setTimezone(new DateTimeZone('UTC'));
 return $date->format('D, d M Y H:i:s \G\M\T');
}
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head></head>
 <body>
 <h1>Header fields sent:</h1>
 <?php
 foreach($headers as $name => $value) {
 print "${name}: ${value}
";
 }

 if(isset($_SERVER['HTTP_IF_MODIFIED_SINCE'])) {
 print "If-Modified-Since has been
 sent in the";
 print "request, value : " .
 $_SERVER['HTTP_IF_MODIFIED_SINCE'];
 }
 ?>
 <hr/>
 <h1>Links for testing</h1>

 <a href="<?=$_SERVER['PHP_SELF']?>?h=expires">
 Test Expires response header field
 <a href="<?=$_SERVER['PHP_SELF']?>?h=cache-control">
 Test Cache-Control response header field
 <a href="<?=$_SERVER['PHP_SELF']?>?
 h=cache-control-override">

Chapter 15 Appendix C: Extra Material Page 275

 Test Cache-Control and Expires
 <a href="<?=$_SERVER['PHP_SELF']?>?h=last-modified">
 Test Last-Modified/If-Modified-Since response header fields
 <a href="<?=$_SERVER['PHP_SELF']?>?h=vary">
 Test Vary response header field

 </body>
</html>

Page 276 Chapter 15 Appendix C: Extra Material

15.7 purgearticle.php

<?php
header('Content-Type: text/plain');
header('Cache-Control: max-age=0');
$hostname = 'localhost';
$port = 80;
$URL = '/article.php';
$debug = true;

print "Updating the article in the database ...\n";
purgeURL($hostname, $port, $URL, $debug);

function purgeURL($hostname, $port, $purgeURL, $debug)
{
 $finalURL = sprintf(
 "http://%s:%d%s", $hostname, $port, $purgeURL
);

 print("Purging ${finalURL}\n");

 $curlOptionList = array(
 CURLOPT_RETURNTRANSFER => true,
 CURLOPT_CUSTOMREQUEST => 'PURGE',
 CURLOPT_HEADER => true ,
 CURLOPT_NOBODY => true,
 CURLOPT_URL => $finalURL,
 CURLOPT_CONNECTTIMEOUT_MS => 2000
);

 $fd = false;
 if($debug == true) {
 print "\n---- Curl debug -----\n";
 $fd = fopen("php://output", 'w+');
 $curlOptionList[CURLOPT_VERBOSE] = true;
 $curlOptionList[CURLOPT_STDERR] = $fd;
 }

 $curlHandler = curl_init();
 curl_setopt_array($curlHandler, $curlOptionList);
 curl_exec($curlHandler);
 curl_close($curlHandler);
 if($fd !== false) {
 fclose($fd);
 }
}
?>

Chapter 15 Appendix C: Extra Material Page 277

15.8 test.php

<?php
$cc = "";
if(isset($_GET['k']) and $_GET['k'] !== '' and
 isset($_GET['v']) and $_GET['v'] !== '') {
 $k=$_GET['k'];
 $v=$_GET['v'];
 $cc = "Cache-Control: $k=$v";

 header("$cc");

}
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head></head>
 <body>
 <h1>Cache-Control Header:</h1>
 <?php
 print "<pre>$cc</pre>\n";
 ?>
 <hr/>
 <h1>Links for testing</h1>
 <form action="/test.php" method="GET">
 Key: <input type="text" name="k">
 Value: <input type="text" name="v">
 <input type="submit">
 </form>
 </body>
</html>

Page 278 Chapter 15 Appendix C: Extra Material

15.9 set-cookie.php

<?php
header("Cache-Control: max-age=0");
$cc = "";
if(isset($_POST['k']) and $_POST['k'] !== '' and
 isset($_POST['v']) and $_POST['v'] !== '') {
 $k=$_POST['k'];
 $v=$_POST['v'];
 $setc = "Set-Cookie: $k=$v";

 header("$setc");

}
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head></head>
 <body>
 <h1>Set-Cookie Header:</h1>
 <?php
 print "<pre>$setc</pre>\n";
 ?>
 <hr/>
 <h1>Links for testing</h1>
 <form action="/set-cookie.php" method="POST">
 Key: <input type="text" name="k">
 Value: <input type="text" name="v">
 <input type="submit">
 </form>
 </body>
</html>

Chapter 15 Appendix C: Extra Material Page 279

15.10 VCL Migrator from Varnish 3 to Varnish 4

• varnish3to4 is a script that assists you migrating a VCL file from Varnish 3 to 4.

• Download it from https://github.com/fgsch/varnish3to4

The script aims to replace most of the syntactical changes in VCL code from Varnish 3 to Varnish 4,
but it is not exhaustive. That said, you should use it under your own responsibility.

You can download the script from https://github.com/fgsch/varnish3to4. Usage and up-to-date
details about the script is at the same web address.

Page 280 Chapter 15 Appendix C: Extra Material

https://github.com/fgsch/varnish3to4
https://github.com/fgsch/varnish3to4

16 Appendix D: VMOD Development

• VMOD basics

• varnishtest

< Hello, World! >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

This appendix explains the concepts you should know to develop your own VMODs. The appendix
takes you through the simplest possible VMOD: the Hello, World VMOD.

To learn most out of this appendix, you should have understood at least the following chapters of
this book: Design Principles, Getting Started, VCL Basics, VCL Subroutines.

Chapter 16 Appendix D: VMOD Development Page 281

16.1 VMOD Basics

• What is a VMOD

• When to use in-line C or VMODs?

• The workspace memory model

• varnishtest

A VMOD is a shared library with some C functions which can be called from VCL code. The standard
(std) VMOD, for instance, is a VMOD included in Varnish Cache. We have already used the std VMOD
in this book to check whether a backend is healthy with by calling std.healthy().

VCL is the domain specific language of Varnish. This language is very powerful and efficient for most
tasks of a cache server. However, sometimes you might need more functionalities, e.g., look up an IP
address in a database.

VCL allows you to add inline C code, but this is not the most convenient approach. If you use the
memory management API provided by Varnish, your VMODs are generally easier to maintain, more
secure, and much easier to debug in collaboration with other developer. In addition, VMODs do not
require to reload VCL files to take effect.

When writing VMODs, you should test them towards varnishtest. In fact, we recommend you first
to write your tests as part of your design, and then implement your VMOD. Therefore, we introduce
next varnishtest before proceeding with the implementation the VMOD itself.

Page 282 Chapter 16 Appendix D: VMOD Development

16.2 varnishtest script program

• Script driven program used to test programs written in VCL and VMODs

With varnishtest you can create mock-ups of clients and origin servers to interact with your
Varnish installation. This is useful to simulate transactions and provoke a specific behavior. You can
use varnishtest when writing VCL code or VMODs. varnishtest is also useful to reproduce
bugs when filing a bug report.

The best way to learn how to create Varnish tests is by running the ones included in Varnish Cache
and then write your own tests based on them. Tests of Varnish Cache are in
bin/varnishtest/tests/. You should also take a look at the README file
bin/varnishtest/tests/README to learn about the naming convention.

Chapter 16 Appendix D: VMOD Development Page 283

16.2.1 VTC
helloworldtest.vtc:

varnishtest "Hello, World"

server s1 {
 rxreq
 txresp
} -start

varnish v1 -vcl+backend {
 sub vcl_deliver {
 set resp.http.hello = "Hello, World";
 }
} -start

client c1 {
 txreq -url "/"
 rxresp
 expect resp.http.hello == "Hello, World"
}

varnish v1 -expect cache_miss == 0
varnish v1 -expect cache_hit == 0

client c1 -run

varnish v1 -expect cache_miss == 1
varnish v1 -expect cache_hit == 0

client c1 -run
client c1 -run

varnish v1 -expect cache_miss == 1
varnish v1 -expect cache_hit == 2

varnishtest does not follow the unit testing framework (up/test/assert/tear down) nor
behavior-driven development (given/when/then). Depending on your use case, there might be test
preparations, executions and assertions all over the place. VTC is not compiled but simply
interpreted on the fly. When run, the above script simulates an origin server s1, starts a real Varnish
instance v1, and simulates a client c1.

server s1 declares a simulated origin server that receives a request rxreq, and transmits a
response txresp. The -start directive makes an instance of that declaration to be started.
-start can also be at a later point in your code as server s1 -start.

varnish v1 -vcl+backend declares an instance of your real Varnish server and loads the VCL
code inside the brackets. varnishtest controls v1 through the manager process (see The Parent

Page 284 Chapter 16 Appendix D: VMOD Development

Process: The Manager). The +backend directive injects the backend (origin server s1) to the VCL
code. Alternatively, you might want to add backends manually, for example:

varnish v1 -vcl {
 backend default {
 .host = "${s1_addr}";
 .port = "${s1_port}";
 }
}

Once s1 is started, the macros ${s1_addr} and ${s1_port} with the IP address and port of your
simulated backend are automatically made available. Since varnishtest launches a real
varnishd instance, it is possible to use a real backend instead of mock servers. Thus, you can test
your actual backend.

client c1 declares a simulated client that transmits a request txreq for the slash URL: -url "/".
c1 receives a response rxresp.

varnishtest supports assertions with the keyword expect. For example, c1 expects the response
header field resp.http.hello with value Hello, World. Assertions can be inside the declaration
of the origin server and client, but not inside the Varnish server. Since Varnish is a proxy, checking
requests and responses in it is irrelevant. Instead, you have access to the counters exposed by
varnishstat at any time:

varnish v1 -expect counter == value

Assertions are evaluated by reading the shared memory log, which ensures that your assertions are
tested against a real Varnish server. Therefore, Varnish tests might take a bit longer than what you
are used to in other testing frameworks. Finally, client c1 -run starts the simulated client c1.

You will learn how to extend this script to test your VMOD later in this chapter, but before, run and
analyze the output of helloworldtest.vtc to understand varnishtest better.

Chapter 16 Appendix D: VMOD Development Page 285

16.2.2 Run Your Varnish Tests

$varnishtest helloworldtest.vtc
 top TEST helloworldtest.vtc passed (1.554)

To run your test, you simply issue varnishtest helloworldtest.vtc By default, varnishtest
outputs the summary of passed tests, and a verbose output for failed tests. It is strongly
recommended that you look at the verbose output to understand what happens under the hood. For
that, you run varnishtest with the -v option.

Later in this appendix, when testing VMODs, we will call make check instead of typing
varnishtest in the command line. make check calls varnishtest with the needed options.

Note

man varnishtest shows you all options

Page 286 Chapter 16 Appendix D: VMOD Development

16.3 Hello, World! VMOD

• Build Varnish Cache from source

• Try libvmod-example

VMODs require the source code from Varnish Cache that you are running. The easiest way to be sure
you have everything in place, is to build your Varnish Cache from source. Although you can also
develop VMODs against a Varnish installation from a package repository. The git repository and
building instructions are at https://github.com/varnish/Varnish-Cache.git.

Once you have built Varnish Cache, build the libvmod-example from
https://github.com/varnish/libvmod-example by following the instructions in the repository. When
building the libvmod-example, make sure that its branch matches with the branch version of
Varnish-Cache. For example, to build libvmod-example against Varnish Cache 4.0, make sure that
you checkout the branch 4.0 in both, the libvmod-example and Varnish-Cache.

Next, we explain the content inside libvmod-example.

Chapter 16 Appendix D: VMOD Development Page 287

https://github.com/varnish/libvmod-example

16.3.1 Declaring and Documenting Functions

• VCC: VCL to C Compiler

vmod_example.vcc:

$Module example
$Init init_function
$Function STRING hello(STRING)

vcc_if.h:

struct VCL_conf;
struct vmod_priv;

/* Functions */
VCL_STRING vmod_hello(VRT_CTX, VCL_STRING);
int init_function(struct vmod_priv *, const struct VCL_conf *);

In vmod_example.vcc you declare the module name, initialization function and other functions
you need. Definitions are stored in files with .vcc extension. Please note the $ sign leading the
definitions in the vmod_example.vcc.

$Module example

The first line gives the name to the module.

$Init init_function

The second line declares an optional initial function, which is called when a VCL program loads this
VMOD.

$Function STRING hello(STRING)

The third line declares the only function in this VMOD.

The source tree is based on autotools to configure the building. When you run the Makefile,it
passes vmod_example.vcc to the script vmodtool.py (included in Varnish Cache) and translates
the VCC code to C. The translation is stored in vcc_if.h and vcc_if.c, and since they are machine
generated, you should not modify them.

The .vcc file also contains the documentation that is used to generate the man page of your
VMOD. The documentation is parsed by vmodtool.py and stored in
src/vmod_example.man.rst. This RST file is then used to create the man page when compiling
your VMOD.

Page 288 Chapter 16 Appendix D: VMOD Development

We advise you to write the documentation of your VMOD in the .vcc file, but if you prefer to have it
in another location, such as the README.rst file, you can change the source for documentation in
Makefile.am. For example, change from:

vmod_example.3: src/vmod_example.man.rst

to:

vmod_example.3: README.rst

Next, you implement the hello functions in the vmod_example.c.

Chapter 16 Appendix D: VMOD Development Page 289

16.3.2 Implementing Functions
vmod_example.c:

VCL_STRING
vmod_hello(const struct vrt_ctx *ctx, VCL_STRING name)
{
 char *p;
 unsigned u, v;

 u = WS_Reserve(ctx->ws, 0); /* Reserve some work space */
 p = ctx->ws->f; /* Front of workspace area */
 v = snprintf(p, u, "Hello, %s", name);
 v++;
 if (v > u) {
 /* No space, reset and leave */
 WS_Release(ctx->ws, 0);
 return (NULL);
 }
 /* Update work space with what we've used */
 WS_Release(ctx->ws, v);
 return (p);
}

You reserve the memory you need by calling WS_Reserve(ctx->ws, 0). It is important to release
the memory you used with WS_Release(ctx->ws, v), otherwise you are introducing a memory
leak.

Page 290 Chapter 16 Appendix D: VMOD Development

16.3.3 The Workspace Memory Model

Figure 33: Work Space Memory Model

Every worker thread has its own workspace ws in virtual memory. This workspace is a contiguous
char array defined in cache/cache.h as:

struct ws {
 unsigned magic;
 #define WS_MAGIC 0x35fac554
 char id[4]; /* identity */
 char *s; /* (S)tart of buffer */
 char *f; /* (F)ree/front pointer */
 char *r; /* (R)eserved length */
 char *e; /* (E)nd of buffer */
};

magic and WS_MAGIC are used for sanity checks by workspace functions. The id field is self
descriptive. The parts that most likely you are interested in are the SFRE fields.

s and e point to the start and end of the char array respectively. f points to the currently
available memory, it can be seen as a head that moves forward every time memory is allocated. f
can move up to the end of the buffer pointed by e.

r points to the reserved memory space of the workspace. This space is reserved to allow incremental
allocation. You should remember to release this space by calling
WS_Release(struct ws *ws, unsigned bytes) once your VMOD does not need it any longer.

The cache/cache.h is automatically included when you compile your .vcc file. Next, we describe
in detail the headers that are included in vmod_example.c.

Chapter 16 Appendix D: VMOD Development Page 291

16.3.4 Headers

#include "vrt.h"
#include "cache/cache.h"

#include "vcc_if.h"

The vrt.h header provides data structures and functions needed by compiled VCL programs and
VMODs. cache.h declares the function prototypes for the workspace memory model among
others. These functions are implemented in cache_ws.c.

cache.h:

void WS_Init(struct ws *ws, const char *id, void *space, unsigned len);
unsigned WS_Reserve(struct ws *ws, unsigned bytes);
void WS_MarkOverflow(struct ws *ws);
void WS_Release(struct ws *ws, unsigned bytes);
void WS_ReleaseP(struct ws *ws, char *ptr);
void WS_Assert(const struct ws *ws);
void WS_Reset(struct ws *ws, char *p);
char *WS_Alloc(struct ws *ws, unsigned bytes);
void *WS_Copy(struct ws *ws, const void *str, int len);
char *WS_Snapshot(struct ws *ws);
int WS_Overflowed(const struct ws *ws);
void *WS_Printf(struct ws *ws, const char *fmt, ...) __printflike(2, 3);

vcc_if.h is generated out from the definitions in your .vcc file. This header contains the
declaration of your VMOD functions in C code.

Page 292 Chapter 16 Appendix D: VMOD Development

16.3.5 Exercise: Build and Test libvmod_example

$./autogen.sh
$./configure
$make
$make check
#make install

• Examine how libvmod_example is imported in src/tests/test01.vtc

The source tree is based on travis and Autotools to configure the building. More detailed building
instructions are in: https://github.com/varnish/libvmod-example/blob/master/README.rst

Note that make check calls varnishtest with the needed options.

Chapter 16 Appendix D: VMOD Development Page 293

https://github.com/varnish/libvmod-example/blob/master/README.rst

16.4 Cowsay: Hello, World!

1. Use rename-vmod-script to rename libvmod-example

2. Create tests

3. Define and document functions in vmod_cowsay.vcc file

4. Implement functions in vmod_cowsay.c file

5. make, make check and make install your VMOD

In this subsection you will learn how to build your own VMOD on top of libvmod-example.
rename-vmod-script prepares a basic VMOD that can be extended to your needs:

$./rename-vmod-script your_vmod_name

We have prepared a cowsay VMOD for you to follow easier this subsection, but you can create your
own VMOD from scratch as we explain further. The cowsay VMOD adds the output of the Linux
program, which generates ASCII pictures of a cow or a different animal with a message. You can
download the code of the cowsay VMOD from https://github.com/aondio/libvmod-cowsay.git.

Page 294 Chapter 16 Appendix D: VMOD Development

https://github.com/aondio/libvmod-cowsay.git

16.4.1 Cowsay Varnish Tests
test01.vtc:

varnishtest "Test cowsay header"

server s1 {
 rxreq
 txresp
} -start

varnish v1 -vcl+backend {
 import cowsay from "${vmod_topbuild}/src/.libs/libvmod_cowsay.so";
 sub vcl_recv {
 if (req.url ~ "/cowsay") {
 set req.http.x-cow = cowsay.cowsay_canonical();
 }
 }

 sub vcl_deliver {
 set resp.http.x-cow = req.http.x-cow;
 }
} -start

client c1 {
txreq -url "/cowsay"
rxresp
expect resp.http.x-cow == "Cowsay: Hello World!"
} -run

Snippet of test02.vtc:

sub vcl_recv {
 if (req.url ~ "/cowsay") {
 return(synth(700, "OK"));
 }
}

sub vcl_synth {
 if (resp.status == 700) {
 set resp.status = 200;
 set resp.http.Content-Type = "text/plain; charset=utf-8";
 synthetic(cowsay.cowsay_vsb());
 return (deliver);
 }
}

...

Chapter 16 Appendix D: VMOD Development Page 295

client c1 {
 txreq -url "/cowsay"
 rxresp
 expect resp.body == {** mybody **
 ^__^
 (oo)_______
 (__)\)\/\
 ||----w |
 || ||
}
} -run

Snippet of test03.vtc:

sub vcl_recv {
 if (req.url ~ "/cowsay" || req.url ~ "/bunny") {
 return(synth(700, "OK"));
 }
}

sub vcl_synth {
 if (resp.status == 700) {
 set resp.status = 200;
 set resp.http.Content-Type = "text/plain; charset=utf-8";
 if (req.url ~ "/cowsay"){
 synthetic(cowsay.cowsay_friends("cow", "moo"));
 }
 if (req.url ~ "/bunny"){
 synthetic(cowsay.cowsay_friends("bunny", "Varnish"));
 }
 return (deliver);
 }
 }

...

client c1 {
 txreq -url "/cowsay"
 rxresp
 expect resp.body == {** moo **

 ^__^
 (oo)_______
 (__)\)\/\
 ||----w |
 || ||

Page 296 Chapter 16 Appendix D: VMOD Development

}
} -run

client c2 {
 txreq -url "/bunny"
 rxresp
 expect resp.body == {** Varnish **
 (\/)
 (..)
(")(")
}
} -run

We advise you to start designing your tests. test01.vtc, test02.vtc and test03.vtc are
examples in https://github.com/franciscovg/libvmod-cowsay.git. test01.vtc shows how the HTTP
response header field is assigned. When client c1 requests the /cowsay URL, Varnish server v1
assigns the output of the VMOD function cowsay_canonical() to the HTTP request header field
req.http.x-cow.

test02.vtc shows how to alter the message body in the vcl_synth subroutine. In this second
test, we use cowsay.cowsay_vsb(), which return the cowsay ASCII picture. The important
difference between cowsay_canonical() and cowsay.cowsay_vsb() is the library used to
manipulate the returned string. We discuss this difference later in this section.

test03.vtc reuses most of test02.vtc. test03.vtc replaces cowsay.cowsay_vsb() for
cowsay.cowsay_friends(arg1, arg2), and adds some basic conditions.
cowsay.cowsay_friends() returns the ASCII figure given in arg1, which utters arg2. After the
design of your tests, you declare the functions in the .vcc file and implement them in the .c file.

16.4.1.1 Exercise: Add Assertions To Your Varnish Tests

• Add more assertions using the keyword expect to check values of Varnish counters

Chapter 16 Appendix D: VMOD Development Page 297

https://github.com/franciscovg/libvmod-cowsay.git

16.4.2 vmod_cowsay.vcc

$Function STRING cowsay_canonical()
$Function STRING cowsay_vsb()
$Function STRING cowsay_friends(STRING, STRING)

cowsay_canonical() uses the canonical string library, and cowsay_vsb() uses the Varnish String
Buffer string library. The VSB library is very useful to manipulate strings. Therefore we recommend
you to use it instead of the canonical string libraries.

Note

Although VCL allows it, we do not recommend to assign multiple lines to HTTP context header
fields.

Page 298 Chapter 16 Appendix D: VMOD Development

16.4.3 vmod_cowsay.c

int
init_function(struct vmod_priv *priv, const struct VCL_conf *conf)
{
 /* init global state valid for the whole VCL life */
 cow =
 "\n ^__^\n"
 " (oo)_______\n"
 " (__)\\)\\/\\\n"
 " ||----w |\n"
 " || ||\n";
 /* this 'cow' is now available for every other functions that will
 be defined in this vmod */
 return (0);
}

VCL_STRING
vmod_cowsay_friends(VRT_CTX, VCL_STRING animal, VCL_STRING talk)
{
 unsigned u;
 struct vsb *vsb;
 u = WS_Reserve(ctx->ws, 0);
 vsb = VSB_new(NULL, ctx->ws->f, u, VSB_AUTOEXTEND);
 if(!strcmp(animal, "cow")) {
 VSB_printf(vsb, "** %s **\n", talk);
 VSB_cat(vsb, cow);
 }

 if(!strcmp(animal, "bunny")) {
 VSB_printf(vsb, "** %s **\n", talk);
 VSB_cat(vsb, baby_bunny());
 }
 VSB_finish(vsb);
 WS_Release(ctx->ws, VSB_len(vsb) + 1);
 return (vsb->s_buf);
}

We explain here two relevant functions in this file. The first is the init_function(), where we
declare a global variable holding the cow figure. The second part is the vmod_cowsay_friends()
function, where we use string manipulation functions provided by VSB. vmod_cowsay_vsb() is a
simplified version of vmod_cowsay_friends(). The implementation of cowsay_canonical() is
practically the same as vmod_hello().

Finally, it is time to make, make check and make install your VMOD. Note that make check
calls varnishtest with the needed options.

Chapter 16 Appendix D: VMOD Development Page 299

16.5 Resources

• https://www.varnish-cache.org/vmods

The best way to learn more about VMODs is by writing them and seeing how others VMOD works.
There are many VMODs written by the Varnish community and Varnish Software. Please take a look
at the list in https://www.varnish-cache.org/vmods.

In addition, you can also look at the following blogs, which were used, besides other sources, to write
this section:

• http://blog.zenika.com/index.php?post/2012/08/21/Creating-a-Varnish-module

• http://blog.zenika.com/index.php?post/2012/08/27/Introducing-varnishtest

• http://blog.zenika.com/index.php?post/2013/07/31/Creating-a-Varnish-4-module

Page 300 Chapter 16 Appendix D: VMOD Development

https://www.varnish-cache.org/vmods
https://www.varnish-cache.org/vmods
http://blog.zenika.com/index.php?post/2012/08/21/Creating-a-Varnish-module
http://blog.zenika.com/index.php?post/2012/08/27/Introducing-varnishtest
http://blog.zenika.com/index.php?post/2013/07/31/Creating-a-Varnish-4-module

17 Appendix E: Varnish Three Letter Acronyms
VAV

Varnish Arg Vector -- Argv parsing.
VBE

Varnish Back End -- Code for contacting backends (bin/varnishd/cache_backend.c)
VBP

Varnish Backend Polling -- Health checks of backends (bin/varnishd/cache_backend_poll.c)
VCA

Varnish Connection Acceptor -- The code that receives/accepts the TCP connections
(bin/varnishd/cache_acceptor.c)

VCC

VCL to C Compiler -- The code that compiles VCL to C code. (lib/libvcl)
VCL

Varnish Configuration Language -- The domain-specific programming language used for
configuring a varnishd.

VCT

Varnish CType(3) -- Character classification for RFC2616 and XML parsing.
VDD

Varnish (Core) Developer Day -- Quarterly invite-only meeting strictly for Varnish core (C)
developers, packagers and VMOD hackers.

VEV

Varnish EVent -- library functions to implement a simple event-dispatcher.
VGB

Varnish Governing Board -- May or may not exist. If you need to ask, you are not on it.
VGC

Varnish Generated Code -- Code generated by VCC from VCL.
VIN

Varnish Instance Naming -- Resolution of -n arguments.
VLU

Varnish Line Up -- library functions to collect stream of bytes into lines for processing.
(lib/libvarnish/vlu.c)

VRE

Varnish Regular-Expression -- library functions for regular-expression based matching and
substring replacement. (lib/libvarnish/vre.c)

VRT

Varnish Run Time -- functions called from compiled code. (bin/varnishd/cache_vrt.c)
VRY

VaRY -- Related to processing of Vary: HTTP headers. (bin/varnishd/cache_vary.c)

Chapter 17 Appendix E: Varnish Three Letter Acronyms Page 301

VSL

Varnish Shared memory Log -- The log written into the shared memory segment for
varnish{log,ncsa,top,hist} to see.

VSB

Varnish string Buffer -- a copy of the FreeBSD "sbuf" library, for safe string handling.
VSC

Varnish Statistics Counter -- counters for various stats, exposed via varnishapi.
VSS

Varnish Session Stuff -- library functions to wrap DNS/TCP. (lib/libvarnish/vss.c)
VTC

Varnish Test Code -- a test-specification for the varnishtest program.
VTLA

Varnish Three Letter Acronym -- No rule without an exception.
VUG

Varnish User Group meeting -- Half-yearly event where the users and developers of Varnish
Cache gather to share experiences and plan future development.

VWx

Varnish Waiter 'x' -- A code module to monitor idle sessions.
VWE

Varnish Waiter Epoll -- epoll(2) (linux) based waiter module.
VWK

Varnish Waiter Kqueue -- kqueue(2) (freebsd) based waiter module.
VWP

Varnish Waiter Poll -- poll(2) based waiter module.
VWS

Varnish Waiter Solaris -- Solaris ports(2) based waiter module.

Page 302 Chapter 17 Appendix E: Varnish Three Letter Acronyms

18 Appendix F: Apache as Backend

• Install Apache. We will use it as backend.

• All commands are executed as root user

To install Apache in Ubuntu or Debian, type the command:

$ apt-get install apache2

For CentOS, RHEL or Fedora:

$ yum install httpd

curl is the tool typically used to transfer data from or to a server, but you might want to use
something else, like HTTPie, which has a very pretty color printing in the terminal. To install HTTPie in
Ubuntu or Debian:

$ apt-get install httpie

Next:

1. Verify that Apache works by typing http -h localhost. You should see a 200 OK response
from Apache.

2. Change Apache's port from 80 to 8080. In Ubuntu or Debian, you do this in
/etc/apache2/ports.conf and /etc/apache2/sites-enabled/000-default.conf. In CentOS, RHEL or
Fedora, edit /etc/httpd/conf/httpd.conf.

3. Restart Apache. In Ubuntu or Debian type service apache2 restart. In CentOS, RHEL or
Fedora:

$ systemctl enable httpd.service
$ apachectl start

4. Verify that Apache still works by typing http -h localhost:8080.

Chapter 18 Appendix F: Apache as Backend Page 303

19 Appendix G: Solutions
This appendix contains the solutions of exercises throughout the book.

Page 304 Chapter 19 Appendix G: Solutions

19.1 Solution: Install Varnish
All the following commands are for Ubuntu and must be executed with root permissions. First, make
sure you have apt-transport-https:

$ apt-get install apt-transport-https

To use the varnish-software.com repository and install Varnish Cache Plus 4.0 or 4.1 on Ubuntu
14.04 trusty:

$ curl https://<username>:<password>@repo.varnish-software.com/GPG-key.txt \
 | apt-key add -

To use the varnish-cache.org repository and install Varnish Cache 4.0 or 4.1 on Ubuntu 14.04
trusty:

$ curl https://repo.varnish-cache.org/ubuntu/GPG-key.txt | apt-key add -
$ echo "deb https://repo.varnish-cache.org/ubuntu/ trusty varnish-4.0" >> \
 /etc/apt/sources.list.d/varnish-cache.list

If you are installing Varnish Cache 4.1, replace varnish-4.0 for varnish-4.1 in the command
above.

If you are installing Varnish Cache Plus 4.0 or 4.1, add the repositories for VMODs in
/etc/apt/sources.list.d/varnish-4.0-plus.list or
/etc/apt/sources.list.d/varnish-4.0-plus.list respectively:

Remember to replace 4.x, DISTRO and RELEASE with what applies to your system.
4.x=(4.0|4.1)
distro=(debian|ubuntu),
RELEASE=(precise|trusty|wheezy|jessie)

Varnish Cache Plus 4.x and VMODs
$ deb https://<username>:<password>@repo.varnish-software.com/DISTRO RELEASE \
$ varnish-4.x-plus

non-free contains VAC, VCS, Varnish Tuner and proprietary VMODs.
$ deb https://<username>:<password>@repo.varnish-software.com/DISTRO RELEASE \
$ non-free

Re-synchronize the package index files of your repository:

$ apt-get update

Install Varnish Cache Plus:

Chapter 19 Appendix G: Solutions Page 305

$ apt-get install varnish-plus

Install Varnish-Cache:

$ apt-get install varnish

Finally, verify the version you have installed:

$ varnishd -V

All software related to Varnish Cache Plus including VMODs are available in RedHat and Debian
package repositories. These repositories are available on http://repo.varnish-software.com/, using
your customer specific username and password.

Varnish is already distributed in many package repositories, but those packages might contain an
outdated Varnish version. Therefore, we recommend you to use the packages provided by
varnish-software.com for Varnish Cache Plus or varnish-cache.org for Varnish Cache. Please be
advised that we only provide packages for LTS releases, not all the intermediate releases. However,
these packages might still work fine on newer releases.

To use Varnish Cache Plus 4.0 or 4.1 repositories on RHEL 6, put the following in
/etc/yum.repos.d/varnish-4.0-plus.repo or
/etc/yum.repos.d/varnish-4.1-plus.repo, and change 4.x for the version you want to
install:

[varnish-4.x-plus]
name=Varnish Cache Plus
baseurl=https://<username>:<password>@repo.varnish-software.com/redhat
/varnish-4.x-plus/el$releasever
enabled=1
gpgcheck=0

[varnish-admin-console]
name=Varnish Administration Console
baseurl=
https://<username>:<password>@repo.varnish-software.com/redhat
/vac/el$releasever
enabled=1
gpgcheck=0

[varnishtuner]
name=Varnish Tuner
baseurl=
https://<username>:<password>@repo.varnish-software.com/redhat
/varnishtuner/el$releasever
enabled=1
gpgcheck=0

Page 306 Chapter 19 Appendix G: Solutions

http://repo.varnish-software.com/

Note

More details on Varnish Plus installation can be found at
http://files.varnish-software.com/pdfs/varnish-cache-plus-manual-latest.pdf

Chapter 19 Appendix G: Solutions Page 307

http://files.varnish-software.com/pdfs/varnish-cache-plus-manual-latest.pdf

19.2 Solution: Test Apache as Backend with varnishtest
vtc/b00002.vtc

varnishtest "Apache as Backend"

varnish v1 -arg "-b 127.0.0.1:8080" -start

client c1 {
 txreq
 rxresp

 expect resp.http.Server ~ "Apache"
 expect resp.http.Via ~ "varnish"
} -run

Page 308 Chapter 19 Appendix G: Solutions

19.3 Solution: Assert Counters in varnishtest
vtc/b00005.vtc

varnishtest "Counters"

server s1 {
 rxreq
 txresp
} -start

varnish v1 -arg "-b ${s1_addr}:${s1_port}" -start

client c1 {
 txreq
 rxresp
}

varnish v1 -expect cache_miss == 0
varnish v1 -expect cache_hit == 0
varnish v1 -expect n_object == 0

client c1 -run

varnish v1 -expect cache_miss == 1
varnish v1 -expect cache_hit == 0
varnish v1 -expect n_object == 1

client c1 -run
client c1 -run

varnish v1 -expect cache_miss == 1
varnish v1 -expect cache_hit == 2
varnish v1 -expect n_object == 1

Chapter 19 Appendix G: Solutions Page 309

19.4 Solution: Tune first_byte_timeout and test it against
your real backend

• Create a CGI script in /usr/lib/cgi-bin/test.cgi containing:

#! /bin/sh
sleep 5
echo "Content-type: text/plain"
echo "Cache-control: max-age=0"
echo
echo "Delayed page"
date

• Make it executable.

• Test that your CGI works without involving Varnish by issuing
http localhost:8080/cgi-bin/test.cgi

• Test your CGI through Varnish by issuing http localhost:80/cgi-bin/test.cgi

In this solution, we have used HTTPie to send a request to the backend, but you can also test your
real backend with varnishtest.

Tip

Remember to enable the CGI module in Apache. One way to do that is by issuing the
commands: a2enmod cgid, and then service apache2 restart.

Page 310 Chapter 19 Appendix G: Solutions

19.5 Solution: Tune first_byte_timeout and test it against
mock-up server
vtc/b00006.vtc

varnishtest "Check that the first_byte_timeout works from parameters"

feature SO_RCVTIMEO_WORKS

server s1 {
 rxreq
 delay 1.5
 txresp -body "foo"
} -start

varnish v1 -vcl+backend {} -start
varnish v1 -cliok "param.set first_byte_timeout 1"

client c1 {
 txreq
 rxresp
 expect resp.status == 503
} -run

server s1 {
 rxreq
 delay 0.5
 txresp -body "foo"
} -start

client c1 {
 txreq
 rxresp
 expect resp.status == 200
} -run

In this example, we introduce -vcl+backend and feature in VTC. -vcl+backend is one way to
pass inline VCL code and backend to v1. In this example, v1 receives no inline VCL injects
declaration of the backend s1. Thus, -vcl+backend{} is equivalent to
-arg "-b ${s1_addr}:${s1_port}" in this case.

feature checks for features to be present in the test environment. If the feature is not present, the
test is skipped. SO_RCVTIMEO_WORKS checks for the socket option SO_RCVTIMEO before executing
the test.

b00006.vtc is copied from Varnish-Cache/bin/varnishtest/tests/b00023.vtc We advise
you to take a look at the many tests under Varnish-Cache/bin/varnishtest/tests/. You will
learn so much about Varnish when analyzing them.

Chapter 19 Appendix G: Solutions Page 311

19.6 Solution: Configure Threading with varnishadm and
varnishstat

• Use varnishadm param.set to set the value of thread_pool_min and thread_pool_max.

• Monitor the MAIN.threads counter in varnishstat to see how many threads are running while
performing this exercise.

Page 312 Chapter 19 Appendix G: Solutions

19.7 Solution: Configure Threading with varnishtest
c00001.vtc

varnishtest "Configure Number of Worker-threads"

server s1 {
 rxreq
 txresp
} -start

varnish v1 \
-arg "-p vsl_mask=+WorkThread" \
-arg "-p thread_pool_min=10" \
-arg "-p thread_pool_max=15" \
-arg "-p thread_pools=1" \
-vcl+backend {}
varnish v1 -start

varnish v1 -expect threads == 10

logexpect l1 -v v1 -g raw {
 expect * 0 WorkThread {^\S+ start$}
 expect * 0 WorkThread {^\S+ end$}
} -start

varnish v1 -cliok "param.set thread_pool_min 11"

Herder thread might sleep up to 5 seconds. Have to wait longer than that.
delay 6

varnish v1 -expect threads == 11

varnish v1 -cliok "param.set thread_pool_min 10"
varnish v1 -cliok "param.set thread_pool_max 10"

Herder thread might sleep up to 5 seconds. Have to wait longer than that.
delay 6

varnish v1 -expect threads == 10

Use logexpect to see that the thread actually exited
logexpect l1 -wait

The test above shows you how to set parameters in two ways; passing the argument -p to
varnishd or calling param.set. -p vsl_mask=+WorkThread is used to turn on WorkThread
debug logging.

Chapter 19 Appendix G: Solutions Page 313

The test proves that varnishd starts with the number of threads indicated in thread_pool_min.
Changes in thread_pool_min and thread_pool_max are applied by the thread herder, which
handles the thread pools and adds or removes threads if necessary. To learn more about other
maintenance threads see https://www.varnish-cache.org/trac/wiki/VarnishInternals.

c00001.vtc is a simplified version of Varnish-Cache/bin/varnishtest/tests/r01490.vtc.

Page 314 Chapter 19 Appendix G: Solutions

https://www.varnish-cache.org/trac/wiki/VarnishInternals

19.8 Solution: Rewrite URL and Host Header Fields

sub vcl_recv {

 set req.http.x-host = req.http.host;
 set req.http.x-url = req.url;

 set req.http.host = regsub(req.http.host, "^www\.", "");

 /* Alternative 1 */
 if (req.http.host == "sport.example.com") {
 set req.http.host = "example.com";
 set req.url = "/sport" + req.url;
 }

 /* Alternative 2 */
 if (req.http.host ~ "^sport\.") {
 set req.http.host = regsub(req.http.host,"^sport\.", "");
 set req.url = regsub(req.url, "^", "/sport");
 }
}

You can test this solution via HTTPie or varnishtest.

Using HTTPie:

http -p hH --proxy=http:http://localhost sport.example.com/index.html

Then you verify your results by issuing the following command and analyzing the output:

varnishlog -i ReqHeader,ReqURL

varnishtest solution:

varnishtest "Rewrite URL and Host Header Fields"

server s1 {
 rxreq
 expect req.http.Host == "example.com"
 expect req.http.ReqURL == "/sport/index.html"
 txresp
}

varnish v1 -vcl {
 backend default {
 .host = "93.184.216.34"; # example.com
 .port = "80";

Chapter 19 Appendix G: Solutions Page 315

 }
 sub vcl_recv {
 set req.http.x-host = req.http.host;
 set req.http.x-url = req.url;
 set req.http.host = regsub(req.http.host, "^www\.", "");

 /* Alternative 1 */
 if (req.http.host == "sport.example.com") {
 set req.http.host = "example.com";
 set req.url = "/sport" + req.url;
 }
 }
} -start

client c1 {
 txreq -url "/index.html" -hdr "Host: sport.example.com"
 rxresp
} -run

Page 316 Chapter 19 Appendix G: Solutions

19.9 Solution: Avoid caching a page

// Suggested solution A
sub vcl_recv {
 if (req.url ~ "^/index\.html" || req.url ~ "^/$") {
 return(pass);
 }
}

// Suggested solution B
sub vcl_backend_response {
 if (bereq.url ~ "^/index\.html" || bereq.url ~ "^/$") {
 set beresp.uncacheable = true;
 }
}

Usually it is most convenient to do as much as possible in vcl_recv. The usage of
bereq.uncacheable in vcl_backend_fetch creates a hit-for-pass object. See the hit-for-pass
section for detailed description about this type of object.

Chapter 19 Appendix G: Solutions Page 317

19.10 Solution: Either use s-maxage or set TTL by file type

sub vcl_backend_response {
 if (beresp.http.cache-control !~ "s-maxage") {
 if (bereq.url ~ "\.jpg(\?|$)") {
 set beresp.ttl = 30s;
 unset beresp.http.Set-Cookie;
 }
 if (bereq.url ~ "\.html(\?|$)") {
 set beresp.ttl = 10s;
 unset beresp.http.Set-Cookie;
 }
 } else {
 if (beresp.ttl > 0s) {
 unset beresp.http.Set-Cookie;
 }
 }
}

There are many ways to solve this exercise, and this solution is only one of them. The first condition
checks the presence of s-maxage and handles .jpg and .html files to make them cacheable for
30 and 10 seconds respectively. If s-maxage is present with a positive TTL, we consider the
response cacheable by removing beresp.http.Set-Cookie.

Page 318 Chapter 19 Appendix G: Solutions

19.11 Solution: Modify the HTTP response header fields

sub vcl_deliver {
 set resp.http.X-Age = resp.http.Age;
 unset resp.http.Age;

 if (obj.hits > 0) {
 set resp.http.X-Cache = "HIT";
 } else {
 set resp.http.X-Cache = "MISS";
 }
}

Chapter 19 Appendix G: Solutions Page 319

19.12 Solution: Change the error message
vcl/customized_error.vcl

/* Change your backend configuration to provoke a 503 error */
backend default {
 .host = "127.0.0.1";
 .port = "8081";
}

/* Customize error responses */
sub vcl_backend_error {
 if (beresp.status == 503){
 set beresp.status = 200;
 synthetic({"
 <html><body><!-- Here goes a more friendly error message. -->
 </body></html>
 "});
 return (deliver);
 }
}

The suggested solution forces a 503 error by misconfiguring .port in the default backend. You can
also force a 503 response by using ${bad_ip} in varnishtest. The macro ${bad_ip} translates
to 192.0.2.255.

vtc/b00011.vtc

varnishtest "Force 503 error"

varnish v1 -vcl {
 backend foo {
 .host = "${bad_ip}";
 .port = "9080";
 }
 /* Customize error responses */
 sub vcl_backend_error {
 if (beresp.status == 503){
 set beresp.status = 200;
 synthetic({"
 <html><body><!-- Here goes a more friendly error message. -->
 </body></html>
 "});
 return (deliver);
 }
 }
} -start

Page 320 Chapter 19 Appendix G: Solutions

client c1 {
 txreq -url "/"
 rxresp
 expect resp.status == 200
} -run

Note that in the proposed solution the client receives a 200 response code.

Chapter 19 Appendix G: Solutions Page 321

19.13 Solution: PURGE an article from the backend
purgearticle.php

<?php
header('Content-Type: text/plain');
header('Cache-Control: max-age=0');
$hostname = 'localhost';
$port = 80;
$URL = '/article.php';
$debug = true;

print "Updating the article in the database ...\n";
purgeURL($hostname, $port, $URL, $debug);

function purgeURL($hostname, $port, $purgeURL, $debug)
{
 $finalURL = sprintf(
 "http://%s:%d%s", $hostname, $port, $purgeURL
);

 print("Purging ${finalURL}\n");

 $curlOptionList = array(
 CURLOPT_RETURNTRANSFER => true,
 CURLOPT_CUSTOMREQUEST => 'PURGE',
 CURLOPT_HEADER => true ,
 CURLOPT_NOBODY => true,
 CURLOPT_URL => $finalURL,
 CURLOPT_CONNECTTIMEOUT_MS => 2000
);

 $fd = false;
 if($debug == true) {
 print "\n---- Curl debug -----\n";
 $fd = fopen("php://output", 'w+');
 $curlOptionList[CURLOPT_VERBOSE] = true;
 $curlOptionList[CURLOPT_STDERR] = $fd;
 }

 $curlHandler = curl_init();
 curl_setopt_array($curlHandler, $curlOptionList);
 curl_exec($curlHandler);
 curl_close($curlHandler);
 if($fd !== false) {
 fclose($fd);
 }

Page 322 Chapter 19 Appendix G: Solutions

}
?>

Chapter 19 Appendix G: Solutions Page 323

solution-purge-from-backend.vcl

acl purgers {
 "127.0.0.1";
}

sub vcl_recv {
 if (req.method == "PURGE") {
 if (!client.ip ~ purgers) {
 return (synth(405, "Not allowed."));
 }
 return (purge);
 }
}

Page 324 Chapter 19 Appendix G: Solutions

19.14 Solution: Write a VCL program using purge and ban

sub vcl_recv {
 if (req.method == "PURGE") {
 return (purge);
 }

 if (req.method == "BAN") {
 ban("obj.http.x-url ~ " + req.http.x-ban-url +
 " && obj.http.x-host ~ " + req.http.x-ban-host);
 return (synth(200, "Ban added"));
 }

 if (req.method == "REFRESH") {
 set req.method = "GET";
 set req.hash_always_miss = true;
 }
}

sub vcl_backend_response {
 set beresp.http.x-url = bereq.url;
 set beresp.http.x-host = bereq.http.host;
}

sub vcl_deliver {
 # We remove resp.http.x-* HTTP header fields,
 # because the client does not neeed them
 unset resp.http.x-url;
 unset resp.http.x-host;
}

Chapter 19 Appendix G: Solutions Page 325

19.15 Solution: Handle Cookies with Vary in varnishtest
vtc/c00003.vtc

varnishtest "Purge objects with Vary: Cookie"

server s1 {
 rxreq
 expect req.url == "/cookie.php"
 txresp -hdr "Vary: Cookie"
 rxreq
 expect req.url == "/cookie.php"
 txresp -hdr "Vary: Cookie"
 rxreq
 expect req.url == "/article.html"
 txresp -hdr "Vary: Cookie"
 rxreq
 expect req.url == "/cookie.php"
 txresp -hdr "Vary: Cookie"
 rxreq
 expect req.url == "/article.html"
 txresp -hdr "Vary: Cookie"
} -start

varnish v1 -vcl+backend {
 sub vcl_recv{
 if (req.method == "PURGE") {
 return (purge);
 }
 else if (req.http.Cookie){
 # Forces Varnish to cache requests with cookies
 return (hash);
 }
 }
 sub vcl_backend_response{
 # Uncomment to remove effect from Vary
 # unset beresp.http.Vary;
 }
} -start

client c1 {
 txreq -url "/cookie.php" -hdr "Cookie: user: Alice"
 rxresp
 expect resp.http.X-Varnish == "1001"
 txreq -url "/cookie.php" -hdr "Cookie: user: Bob"
 rxresp
 expect resp.http.X-Varnish == "1003"
 txreq -url "/cookie.php" -hdr "Cookie: user: Alice"

Page 326 Chapter 19 Appendix G: Solutions

 rxresp
 expect resp.http.X-Varnish == "1005 1002"
 txreq -url "/article.html" -hdr "Cookie: user: Alice"
 rxresp
 expect resp.http.X-Varnish == "1006"
 txreq -url "/article.html" -hdr "Cookie: user: Alice"
 rxresp
 expect resp.http.X-Varnish == "1008 1007"
} -run

varnish v1 -expect n_object == 3

client c1 {
 txreq -req PURGE -url "/cookie.php"
 rxresp
} -run

varnish v1 -expect n_object == 1

client c1 {
 txreq -url "/cookie.php" -hdr "Cookie: user: Alice"
 rxresp
 expect resp.http.X-Varnish == "1012"
 txreq -url "/article.html" -hdr "Cookie: user: Bob"
 rxresp
 expect resp.http.X-Varnish == "1014"
} -run

varnish v1 -expect n_object == 3

Vary and hash_data() might behave very similar at first sight and they might even seem like
alternatives for handling cookies. However, cached objects are referenced in different ways.

If Varnish is forced to store responses with cookies, Vary ensures that Varnish stores resources per
URL and Cookie. If Vary: Cookie is used, objects are purged in this way:

txreq -req PURGE -url "/cookie.php"

but something different is needed when using hash_data(req.http.Cookie), as you can see it in
the next suggested solution.

Chapter 19 Appendix G: Solutions Page 327

19.16 Solution: Handle Cookies with hash_data() in
varnishtest
vtc/c00004.vtc

varnishtest "Purge objects after hash_data(cookie)"

server s1 {
 rxreq
 expect req.url == "/cookie.php"
 txresp
 rxreq
 expect req.url == "/cookie.php"
 txresp
 rxreq
 expect req.url == "/article.html"
 txresp
 rxreq
 expect req.url == "/cookie.php"
 txresp
 rxreq
 expect req.url == "/article.html"
 txresp
} -start

varnish v1 -vcl+backend {
 sub vcl_recv{
 if (req.method == "PURGE") {
 return (purge);
 }
 else if (req.http.Cookie){
 return (hash);
 }
 }
 sub vcl_hash{
 hash_data(req.http.Cookie);
 }
} -start

client c1 {
 txreq -url "/cookie.php" -hdr "Cookie: user: Alice"
 rxresp
 expect resp.http.X-Varnish == "1001"
 txreq -url "/cookie.php" -hdr "Cookie: user: Bob"
 rxresp
 expect resp.http.X-Varnish == "1003"
 txreq -url "/cookie.php" -hdr "Cookie: user: Alice"

Page 328 Chapter 19 Appendix G: Solutions

 rxresp
 expect resp.http.X-Varnish == "1005 1002"
 txreq -url "/article.html" -hdr "Cookie: user: Alice"
 rxresp
 expect resp.http.X-Varnish == "1006"
 txreq -url "/article.html" -hdr "Cookie: user: Alice"
 rxresp
 expect resp.http.X-Varnish == "1008 1007"
} -run

varnish v1 -expect n_object == 3

client c1 {
 txreq -req PURGE -url "/cookie.php" -hdr "Cookie: user: Alice"
 rxresp
} -run

varnish v1 -expect n_object == 2

client c1 {
 txreq -url "/cookie.php" -hdr "Cookie: user: Alice"
 rxresp
 expect resp.http.X-Varnish == "1012"
 txreq -url "/article.html" -hdr "Cookie: user: Bob"
 rxresp
 expect resp.http.X-Varnish == "1014"
} -run

varnish v1 -expect n_object == 4

hash_data(req.http.Cookie) adds the request header field Cookie to the hash key. So Varnish
can discern between backend responses linked to a specific request header field.

To purge cached objects in this case, you have to specify the header field used in hash_data():

txreq -req PURGE -url "/cookie.php" -hdr "Cookie: user: Alice"

Chapter 19 Appendix G: Solutions Page 329

19.17 Solution: Write a VCL that masquerades XHR calls
vcl/solution-vcl_fetch-masquerade-ajax-requests.vcl

vcl 4.0;

backend localhost{
 .host = "127.0.0.1";
 .port = "8080";
}

backend google {
 .host = "173.194.112.145";
 .port = "80";
}

sub vcl_recv{
 if (req.url ~ "^/masq") {
 set req.backend_hint = google;
 set req.http.host = "www.google.com";
 set req.url = regsub(req.url, "^/masq", "");
 return (hash);
 } else {
 set req.backend_hint = localhost;
 }
}

Page 330 Chapter 19 Appendix G: Solutions

	1 Introduction
	1.1 What is Varnish?
	1.1.1 Varnish is Flexible

	1.2 Varnish Cache and Varnish Plus
	1.3 Varnish Cache and Varnish Software Timeline
	1.4 What Is New in Varnish 4?

	2 Design Principles
	2.1 How objects are stored
	2.2 Object Lifetime

	3 Getting Started
	3.1 Varnish Distribution
	3.2 Exercise: Install Varnish
	3.3 Exercise: Configure Varnish
	3.3.1 VCL Reload
	3.3.2 Test Varnish Using Apache as Backend

	3.4 The Management Interface varnishadm
	3.5 More About Varnish Configuration
	3.6 Command Line Configuration
	3.7 Defining a Backend in VCL
	3.8 Exercise: Use the administration interface to learn, review and set Varnish parameters
	3.9 Exercise: Fetch Data Through Varnish

	4 Examining Varnish Server's Output
	4.1 Log Data Tools
	4.2 Log Layout
	4.3 Transactions
	4.3.1 Transaction Groups
	4.3.2 Example of Transaction Grouping with varnishlog

	4.4 Query Language
	4.5 Exercise: Filter Varnish Log Records
	4.6 varnishstat
	4.6.1 Notable Counters

	4.7 Exercise: Try varnishstat and varnishlog together

	5 Tuning
	5.1 Varnish Architecture
	5.1.1 The Parent Process: The Manager
	5.1.2 The Child Process: The Cacher
	5.1.3 VCL Compilation

	5.2 Storage Backends
	5.3 The Varnish Shared memory Log (VSL)
	5.4 Tunable Parameters
	5.5 Varnish Tuner
	5.5.1 Varnish Tuner Persistence
	5.5.2 Install Varnish Tuner

	5.6 Threading Model
	5.7 Threading Parameters
	5.7.1 Details of Threading Parameters
	5.7.2 Time Overhead per Thread Creation

	5.8 System Parameters
	5.9 Timers
	5.10 Exercise: Tune first_byte_timeout
	5.11 Exercise: Configure Threading

	6 HTTP
	6.1 Protocol Basics
	6.1.1 Resources and Representations
	6.1.2 Requests and Responses
	6.1.3 Request Example
	6.1.4 Response Example

	6.2 HTTP Characteristics
	6.3 Cache-related Headers Fields
	6.4 Constructing Responses from Caches
	6.5 Cache Matching
	6.5.1 Vary
	6.5.2 ETag
	6.5.3 Last-Modified
	6.5.4 If-None-Match
	6.5.5 If-Modified-Since

	6.6 Allowance
	6.6.1 Cache-Control
	6.6.2 Pragma

	6.7 Freshness
	6.7.1 Age
	6.7.1.1 Exercise: Use article.php to test Age

	6.7.2 Expires

	6.8 Availability of Header Fields
	6.9 Exercise: Test Various Cache Headers Fields with a Real Browser

	7 VCL Basics
	7.1 Varnish Finite State Machine
	7.2 Detailed Varnish Request Flow for the Client Worker Thread
	7.3 The VCL Finite State Machine
	7.4 VCL Syntax
	7.5 Built-in vcl_recv
	7.6 VCL Built-in Functions and Keywords
	7.7 Legal Return Actions
	7.8 Variables in VCL subroutines
	7.9 Detailed Varnish Request Flow for the Backend Worker Thread
	7.10 VCL – vcl_backend_response
	7.10.1 vcl_backend_response
	7.10.2 The Initial Value of beresp.ttl
	7.10.3 Example: Setting TTL of .jpg URLs to 60 seconds
	7.10.4 Example: Cache .jpg for 60 seconds only if s-maxage is not present
	7.10.5 Exercise: Avoid Caching a Page
	7.10.6 Exercise: Either use s-maxage or set TTL by file type

	7.11 Waiting State
	7.12 Summary of VCL Basics

	8 VCL Subroutines
	8.1 VCL – vcl_recv
	8.1.1 Revisiting built-in vcl_recv
	8.1.2 Example: Basic Device Detection
	8.1.3 Exercise: Rewrite URL and Host Header Fields

	8.2 VCL – vcl_pass
	8.2.1 hit-for-pass

	8.3 VCL – vcl_backend_fetch
	8.4 VCL – vcl_hash
	8.5 VCL – vcl_hit
	8.6 VCL – vcl_miss
	8.7 VCL – vcl_deliver
	8.8 VCL – vcl_synth
	8.8.1 Example: Redirecting requests with vcl_synth

	8.9 Exercise: Modify the HTTP response header fields
	8.10 Exercise: Change the error message

	9 Cache Invalidation
	9.1 Purge - Bans - Cache Misses - Surrogate Keys
	9.2 HTTP PURGE
	9.2.1 VCL – vcl_purge
	9.2.2 Example: PURGE
	9.2.3 Exercise: PURGE an article from the backend
	9.2.4 PURGE with restart return action

	9.3 Softpurge
	9.4 Banning
	9.4.1 Lurker-Friendly Bans

	9.5 Exercise: Write a VCL program using purge and ban
	9.6 Force Cache Misses
	9.7 Hashtwo/Xkey (Varnish Software Implementation of Surrogate Keys)
	9.7.1 Example Using Hashtwo or Xkey

	10 Saving a Request
	10.1 Directors
	10.1.1 Random Directors

	10.2 Health Checks
	10.2.1 Analyzing health probes
	10.2.2 Demo: Health Probes

	10.3 Grace Mode
	10.3.1 Timeline Example
	10.3.2 Exercise: Grace

	10.4 retry Return Action
	10.5 Saint Mode
	10.6 Tune Backend Properties
	10.7 Access Control Lists (ACLs)
	10.8 Compression

	11 Content Composition
	11.1 A Typical Website
	11.2 Cookies
	11.2.1 Vary and Cookies
	11.2.2 Best Practices for Cookies
	11.2.3 Exercise: Handle Cookies with Vary and hash_data with HTTPie

	11.3 Edge Side Includes
	11.3.1 Basic ESI usage
	11.3.2 Example: Using ESI
	11.3.3 Exercise: Enable ESI and Cookies
	11.3.4 Testing ESI without Varnish

	11.4 Masquerading AJAX requests
	11.4.1 Exercise: write a VCL that masquerades XHR calls

	12 Varnish Plus Software Components
	12.1 Varnish Administration Console (VAC)
	12.1.1 Overview Page of the Varnish Administration Console
	12.1.2 Configuration Page of the Varnish Administration Console
	12.1.3 Banning Page of the Varnish Administration Console

	12.2 Varnish Custom Statistics (VCS)
	12.2.1 VCS Data Model
	12.2.2 VCS API
	12.2.3 Screenshots of GUI

	12.3 Varnish High Availability (VHA)
	12.4 SSL/TLS frontend support with hitch

	13 Appendix A: Resources
	14 Appendix B: Varnish Programs
	14.1 varnishtop
	14.2 varnishncsa
	14.3 varnishhist
	14.4 Exercise: Try varnishstat, varnishlog and varnishhist
	14.5 varnishtest
	14.5.1 The Varnish Test Case (VTC) Language
	14.5.2 Synchronization in Varnish Tests
	14.5.3 Running Your Varnish Test Cases
	14.5.4 Exercise: Test Apache as Backend with varnishtest
	14.5.5 Setting Parameters in varnishtest
	14.5.6 Fetch Data with varnishtest
	14.5.7 Understanding Expires in varnishtest
	14.5.8 Example of Transactions in varnishtest
	14.5.9 logexpect
	14.5.10 Exercise: Assert Counters in varnishtest
	14.5.11 Understanding Vary in varnishtest
	14.5.12 Understanding Last-Modified and If-Modified-Since in varnishtest
	14.5.13 Understanding Cache-Control in varnishtest
	14.5.14 VCL in varnishtest
	14.5.15 PURGE in varnishtest
	14.5.16 Cache Invalidation in varnishtest
	14.5.17 Understanding Grace using varnishtest
	14.5.18 Exercise: Handle Cookies with Vary and hash_data() in varnishtest
	14.5.19 Understanding ESI in varnishtest

	15 Appendix C: Extra Material
	15.1 ajax.html
	15.2 article.php
	15.3 cookies.php
	15.4 esi-top.php
	15.5 esi-user.php
	15.6 httpheadersexample.php
	15.7 purgearticle.php
	15.8 test.php
	15.9 set-cookie.php
	15.10 VCL Migrator from Varnish 3 to Varnish 4

	16 Appendix D: VMOD Development
	16.1 VMOD Basics
	16.2 varnishtest script program
	16.2.1 VTC
	16.2.2 Run Your Varnish Tests

	16.3 Hello, World! VMOD
	16.3.1 Declaring and Documenting Functions
	16.3.2 Implementing Functions
	16.3.3 The Workspace Memory Model
	16.3.4 Headers
	16.3.5 Exercise: Build and Test libvmod_example

	16.4 Cowsay: Hello, World!
	16.4.1 Cowsay Varnish Tests
	16.4.1.1 Exercise: Add Assertions To Your Varnish Tests

	16.4.2 vmod_cowsay.vcc
	16.4.3 vmod_cowsay.c

	16.5 Resources

	17 Appendix E: Varnish Three Letter Acronyms
	18 Appendix F: Apache as Backend
	19 Appendix G: Solutions
	19.1 Solution: Install Varnish
	19.2 Solution: Test Apache as Backend with varnishtest
	19.3 Solution: Assert Counters in varnishtest
	19.4 Solution: Tune first_byte_timeout and test it against your real backend
	19.5 Solution: Tune first_byte_timeout and test it against mock-up server
	19.6 Solution: Configure Threading with varnishadm and varnishstat
	19.7 Solution: Configure Threading with varnishtest
	19.8 Solution: Rewrite URL and Host Header Fields
	19.9 Solution: Avoid caching a page
	19.10 Solution: Either use s-maxage or set TTL by file type
	19.11 Solution: Modify the HTTP response header fields
	19.12 Solution: Change the error message
	19.13 Solution: PURGE an article from the backend
	19.14 Solution: Write a VCL program using purge and ban
	19.15 Solution: Handle Cookies with Vary in varnishtest
	19.16 Solution: Handle Cookies with hash_data() in varnishtest
	19.17 Solution: Write a VCL that masquerades XHR calls

